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a b s t r a c t

We extend Armstrong’s (1996) result on exclusion in multi-dimensional screening models providing
support for the view that the result holds true in a large class of models. We first relax some of the strong
technical assumptions he imposed and provide alternative sufficient conditions for exclusion not relying
on any form of convexity. We then proceed to show that exclusion obtains generically. We illustrate the
results with examples and applications.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

When considering the problem of screening, where sellers
choose a sales mechanism and buyers have private information
about their types, it is well known that the techniques used in
the multi-dimensional setting are not as straightforward as those
in the one-dimensional setting. As a consequence, while we have
a host of successful applications with one-dimensional types, to
date we have only a few scattered papers that allow for multi-
dimensional types. This is unfortunate because in many, if not
most, economic applications multi-dimensional types are needed
to capture the basic economics of the environment, and the propo-
sitions coming from the one-dimensional case do not necessarily
generalize to the multi-dimensional case.1

One intriguing result in the theory ofmulti-dimensional screen-
ing comes from Armstrong (1996), who shows that a monopolist
will find it optimal to not serve some fraction of consumers, even
when there is positive surplus associated with those consumers.
That is, in settings where consumers might differ in at least two
characteristics, monopolists will choose a sales mechanism that
excludes a positive measure of consumers. The intuition behind
this result is as follows: consider a situation where the monopolist
serves all consumers; if she increases the price by " > 0 she earns

⇤ Corresponding author.
E-mail address: paulo.barelli@rochester.edu (P. Barelli).

1 See Rochet and Stole (2003) and Basov (2005) for surveys of the literature.

extra profits of orderO(") on the consumerswho still buy the prod-
uct, but will lose only the consumers whose surplus was below ";
if the dimension of the vector of consumers’ taste characteristics is
greater than one, the space of such vectors is strictly convex, and
the surplus function is quasi-convex, then the measure of the set
of the lost consumers is of order O("m); therefore, it is profitable to
increase the price and exclude some consumers. In principle, this
result has profound implications across a wide range of economic
settings. The general belief that heterogeneity of consumer types
is likely to be more than one-dimensional in nature, for many dif-
ferent commodities, and that these types are likely to be private
information, underlines the significance of Armstrong’s result.2
Moreover, the intuition provided above seems to be robust, i.e.,
seems to not depend on particular technical details of the model.

However, Armstrong’s (1996) result was derived under a rel-
atively strong set of assumptions, which could be seen as limiting
its applicability, and subsequent research has identified conditions
under which the result does not hold. In particular, in addition to
assuming that types belong to a strictly convex and compact body
of a finite dimensional space, Armstrong obtains quasi-convexity of
the surplus function by assuming that the utility functions of the
agents are quasi-linear, homogeneous and convex in their types.

2 The type of an economic agent is simply her utility function. If one is agnostic
about the preferences and does not want to impose on them any assumptions
beyond, perhaps, monotonicity and convexity, then the most natural assumption
is that the type is multi-dimensional.
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Basov (2005) refers to this pair of convexity requirements as the
joint convexity assumption and argues that, although convexity of
utility in types and convexity of the types set separately are not re-
strictive and can be seen as a choice of parametrization, the joint
convexity assumption is technically restrictive.

The joint convexity assumption has no empirical foundation
and is nonstandard. For instance, the benchmark case of indepen-
dent types fails joint convexity because the type space is the not
strictly convexmulti-dimensional box. There is, in general, no the-
oretical justification for a particular assumption about the curva-
ture of utility functions with respect to types, as opposed to, say,
quasi-concavity of utility functions with respect to goods. In the
same line, in general there is no justification, other than analyti-
cal tractability, for type spaces to be convex, and for utility func-
tions to be homogeneous in types. On the other hand, Armstrong
(1999), Rochet and Stole (2003), Jehiel et al. (1999) and Severinov
andDeneckere (2006) found examples outside of these restrictions
where the exclusion set is empty. That is, the technical conditions
provided by Armstrong (1996) cannot simply be dropped.

It turns out that the conditions can be improved upon. In par-
ticular, there is no need to assume that utility functions are quasi-
linear, homogeneous, or convex in types, or that the type space is
convex. In Theorem 1we establish that exclusion is optimal when-
ever the utility functions are increasing in types, bounded, and the
boundary structure of the type space is of a particular kind.3 That is,
our assumptions on the utility functions are substantially weaker
thanArmstrong’s, but the assumption on type spaces is non-nested
with his assumption of a strictly convex type space. We do allow
for non-convex type spaces, but the requirement on the boundary
structure need not hold for a given strictly convex type space.

Moreover, we show that the counter-examples found in the lit-
erature are knife-edge cases. In Theorem 2we establish that exclu-
sion is generically optimal for amonopolist in the family of models
where utility functions are of class C1 and monotone in types, and
types belong to sets of locally finite perimeter. The class of sets of
locally finite perimeter is a class of sets that includes all of the ex-
amples the authors are aware of in the literature, and we stress,
includes type spaces that are nowhere close to being convex. That
is, exclusion is generically optimal in a large class of models that
contains the model used by Armstrong.

We illustrate the generality of the results with a few examples
and two applications, namely the regulation of a monopolist with
unknown demand and cost functions, and the emergence of invol-
untary unemployment as a result of screening by employers. The
former application picks up of the analysis in Armstrong (1999),
where he reviews Lewis and Sappington (1988) and conjectures
that exclusion is probably an issue in their analysis. At that time,
Armstrong could not prove the point, due to the lack of a more
general exclusion result. With our results in hand, we are able to
establish that Armstrong’s conjecture is generically true. The latter
application is a straightforward way of showing that, when work-
ers have multi-dimensional characteristics, it is generically opti-
mal for employers (with market power in the labor market) to not
hire all the workers.

In sum, the paper provides evidence to the proposition that pri-
vate information leads to exclusion in many realistic monopolis-
tic settings. To avoid it, one must either assume that all allowable
preferences lie on a one-dimensional continuum, or construct very
specific type distributions and preferences.

The rest of the paper is organized as follows. In Section 2
we present the monopoly problem with consumers with multi-
dimensional characteristics, together with assumptions on the

3 Rightward-slanted diamonds are typical examples of type spaces having
boundary structures of the kinds required for Theorem1, but the class ismuch larger
and includes non-convex sets.

underlying parameters under which it is generically optimal to
have exclusion. We present the economic and geometric argu-
ments behind our results in Section 3. Section 4 presents examples
and applications, illustrating further the genericity of exclusion
and the impact of such a fact in economic applications. The proofs
of our results are in the Appendix.

2. Monopolistic screening and results

Consider a firmwith a monopoly over n goods. The tastes of the
consumers over these goods are parametrized by a vector ↵ 2 Rm+.
The utility of a type ↵ consumer consuming a bundle x 2 Rn+ and
paying t 2 R to the firm is

v(↵, x, t),

where v is strictly increasing and strictly concave in x, and strictly
decreasing in t . Our focus is not on relaxing the smoothness as-
sumptions on v, so we will assume that v is twice continuously
differentiable, with vt(↵, x, t) ⌘ @v(↵,x,t)

@t < 0 Lipschitz continu-
ous, bounded below and away from zero. Furthermore, we assume
that vi,t ⌘ @2v

@↵i@t
 0 for all i = 1, . . . ,m.4 The case of quasilinear

preferences v(↵, x, t) = ⌫(↵, x) � t is a special case with vt = �1
and vi,t = 0 for all i = 1, . . . ,m.

The total cost of producing bundle x is given by c(x), where c
is a convex function (possibly linear). The set of feasible produc-
tion vectors is denoted by X ⇢ Rn+. The firm is not able to observe
the consumer’s type, but has prior beliefs over the distribution of
types, described by the density function f (↵), with compact sup-
port supp(f ) = ⌦ , where ⌦ ⇢ Rm is the space of types, and
⌦ is its closure. We assume that ⌦ ⇢ U is a bounded open set
with locally finite perimeter in the open set U , and that f is Lips-
chitz continuous.5 Intuitively, a set has locally finite perimeter if
its characteristic function is a function of bounded variation, hence
it is a large class of open sets that includes the class of open con-
vex sets as a very small subclass.6 We assume that v(·, x, t) can be
extended by continuity to ⌦ . Consumers have an outside option
of value s0(↵), which is assumed to be continuously differentiable,
implementable and extendable by continuity to ⌦ .7 Let x0(↵) be
the outside option implementing s0(↵) at price p(↵) for type ↵, so
that v(↵, x0(↵), p(↵)) = s0(↵).

The firm looks for a selling mechanism that maximizes its prof-
its. The Taxation Principle (Rochet, 1985) implies that one can,
without loss of generality, assume that the monopolist simply an-
nounces a non-linear tariff t : X ! R.

The above considerations can be summarized by the following
model. The firm selects a function t : X ! R to solve

max
Z

⌦

(t(x(↵)) � c(x(↵)))f (↵)d↵, (1)

4 The economic rationale for this assumption is that if it did not hold (that is, if
vi,t ⌘ @2v

@↵i@t
> 0 for some i) we would have higher types less price sensitive, which

would give an extra incentive for the monopolist to charge them higher prices; we
assume this case away to concentrate on price discrimination alone.
5 It is convenient for our purposes to use some (basic) concepts and results from

geometric measure theory, and we refer the reader to Evans and Gariepy (1992)
and Chlebik (2002) for more information. For the reader who is not familiar with
geometric measure theory, it suffices to keep in mind that the type spaces that
we consider are allowed to be more general than the typical type spaces in the
literature. We also refer the reader for the examples in Section 3 for some concrete
geometric and economic intuition.
6 Recall that the characteristic function of ⌦ is given by �⌦ (x) = 1 if x 2 ⌦ and

�⌦ (x) = 0 if x 62 ⌦ . Hence, a set of finite perimeter can have holes and a rough (i.e.,
not Lipschitz) boundary, provided that the latter is not ‘‘too wiggly’’, in the sense
that the variation of �⌦ has to remain bounded.
7 For conditions of implementability of a surplus function see Basov (2005).
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where x(↵) satisfies
8
><

>:

x(↵) 2 argmax
x2X

v(↵, x, t(x)) if max
x2X

v(↵, x, t(x)) � s0(↵)

x(↵) = x0(↵) otherwise.
(2)

Define the net utility as the unique function u(↵, x) that solves

s0(↵) = v(↵, x, u(↵, x)). (3)

The economic meaning of u(↵, x) is the maximal amount type ↵
is willing to pay for the bundle x. Given our assumptions on vt , u
is differentiable by the Implicit Function Theorem. Note that the
optimal tariff paid by type ↵ satisfies

t(x(↵))  u(↵, x(↵)). (4)

Let s(↵) denote the surplus obtained by type ↵:

s(↵) =

8
>><

>>:

max
x2X

v(↵, x, t(x))
�s0(↵) if max

x2X
v(↵, x, t(x))

� s0(↵)
0 otherwise.

(5)

Accordingly, we have the envelope condition

rs(↵) = r↵v(↵, x(↵), t(x(↵))) � rs0(↵)

which holds for almost every ↵ with x(↵) 6= x0(↵). From (3) we
have

rs0(↵) = r↵v(↵, x(↵), u(↵, x(↵))) + vt(↵, x(↵), u(↵, x(↵)))

⇥ r↵u(↵, x(↵)),

so the envelope condition plus our assumptions on vt and vi,t yield

�(↵)rs(↵) � r↵u(↵, x(↵)) (6)

for almost every ↵ with x(↵) 6= x0(↵), where

�(↵) = |vt(↵, x(↵), u(↵, x(↵)))|�1

is positive and bounded away from zero by assumption.
We are interested in the set of excluded consumers, given by

{↵ 2 ⌦ : x(↵) = x0(↵)},
that is, the set of types that optimally choose to not participate.

Assumption 1. u is strictly increasing in ↵ for each x 2 X .

For a, b 2 Rm let a · b denote the inner product of a and b.

Assumption 2. There exists K > 0 such that

u(↵, x)  K↵ · r↵u(↵, x)

for every (↵, x) 2 ⌦ ⇥ X .

Assumptions 1 and 2 are regularity conditions, requiring that
the net utility be increasing in ↵ and bounded. Note that v is al-
lowed to be decreasing in↵ for each (x, t), as long as Assumptions 1
and 2 are satisfied.

For any Lebesgue measurable set E ⇢ Rm let Lm(E) denote its
Lebesgue measure and H s(E) denote its s-dimensional Hausdorff
measure. For s = m, the Hausdorff measure of a Borel set coin-
cides with the Lebesgue measure, while for s < m it generalizes
the notion of the surface area.8

8 For a definition of the Hausdorff measure, see Chlebik (2002).

Let @e⌦ denote themeasure-theoretic boundary of⌦ .9 Because
⌦ has locally finite perimeter, themeasure-theoretic boundary can
be decomposed into countably many C1 pieces and a residual set
with measure zero. That is,

@e⌦ =
1[

i=1

Ki [ N,

where Ki is a compact subset of a C1-hyper-surface Si, for i � 1,
and Hm�1(N) = 0. Accordingly, let us write
Ki = {↵ 2 ⌦ : gi(↵) = 0}
for i � 1, with gi : Rm ! R of class C1.

Assumption 3. For all ↵ 2 Rm and i � 1, we have

r↵gi(↵) 2 Rm \ (Rm
+ [ Rm

�).

Assumption 3 restricts ⌦ to be of a particular class of type
spaces, which includes the ‘‘rightward-slanted diamond’’ type
spaces mentioned in the Introduction (see also Fig. 2 in Section 3).
Together with Assumption 1, it implies that the boundary of ⌦
is never parallel to the iso-surplus hyper-surfaces. As we argue in
Section 3 below, this is the key geometric requirement for obtain-
ing exclusion.

Our main results come next. They will be stated without refer-
ence to the well-known sufficient conditions for implementability
of the surplus function s in order to focus on the conditions that
highlight the nature of the contribution being made.

Theorem 1. Consider the problem (1)–(2), and assume that it has
a finite solution yielding an allocation x(↵) and surplus s(↵) which
are continuous. Then, under Assumptions 1–3, the set of excluded
consumers at the solution has positive measure.

That is, if the problem has a continuous solution, Assump-
tions 1–3 ensure that there will be exclusion.

Remark 1. The conditions in Theorem 1 are in general more per-
missive than the conditions in the literature, including those used
by Armstrong (1996). In particular, the literature focuses on the
quasilinear case,where the net utility is simply u(↵, x) = ⌫(↵, x)�
s0(↵) = ⌫(↵, x), as s0(↵) is usually assumed to be equal to zero for
every ↵. Armstrong (1996) assumes that ⌫(·, x) is homogeneous of
degree 1 and strictly convex, which are special cases of Assump-
tions 1 and 2. As for the type space ⌦ , the assumptions are non-
nested: Assumption 3 allows for non-convex, general type spaces,
but with a particular boundary structure, whereas Armstrong’s as-
sumption that ⌦ is strictly convex allows for type spaces with
boundary structures violating Assumption 3.

Consider now an underlying set of all type spaces. It is given by
{⌦� : � 2 B}, where B is an index set. For each � 2 B, ⌦� is an
open set with locally finite perimeter in some open set U� and its
boundary structure is given by

@e⌦� =
1[

i=1

Ki,� [ N� ,

where
Ki,� = {↵ 2 ⌦� : gi(↵, �) = 0}
for i � 1,with gi : Rm⇥B ! R of class C1, andN� is a set ofHm�1-
measure zero. We make the following assumption about {⌦� :
� 2 B}:

9 The measure-theoretic boundary of a set is contained in the topological
boundary of the set. It consists of the points that are neither in the measure-
theoretic interior nor in the measure-theoretic exterior of the set, which are
supersets of their topological counterparts.
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Fig. 1. Armstrong’s setting.

Assumption 4. (i) B is a finite dimensional openmanifold of class
C1; (ii) the family {gi}i�1 is compact in the C1 topology10; (iii) there
exists �̂ 2 B such that

r↵gi(↵, �̂) 2 Rm \ (Rm
+ [ Rm

�)

for all ↵ 2 Rm and all i = 1, . . . , k.

That is, the parameters B determine the underlying set of type
spaces that we consider. Requirements (ii) and (iii) are mild tech-
nical requirements ensuring that we can apply transversality ideas
to establish that exclusion is generic: the compactness require-
ment in (ii) is a regularity condition that is satisfied if we restrict
to boundary structures formed of only finitely many pieces, as it
is the case in all applications we are aware of; (iii) simply requires
that at least one type space of the kind identified in Assumption 3
be included as a member of the allowed types spaces. A seemingly
more important requirement is the finite dimensionality of B in
requirement (i). But this is just for a cleaner presentation of our
ideas. In Lemma 6 in the Appendix, we make use of the standard
Transversality Theorem, which is valid in a finite dimensional en-
vironment. It is well known that there exist general versions of the
Transversality Theorem that allow for infinite dimensions.11 One
can generalize Assumption 4 allowing for an infinite dimensional
B and adapt Lemma 6 with a more powerful Transversality Theo-
rem. We leave this task to the interested reader. Let ' : B ◆ Rm

be given by '(�) = ⌦� .

Theorem 2. Consider the problem (1)–(2) for each � 2 B , and as-
sume that s0 and rs0 are continuous at each (↵, �) in the closure of
the graph of '. Assume that the problem has a finite solution yield-
ing an allocation x(↵; �) and surplus s(↵; �) which are continuous
at each (↵, �) in the closure of the graph of '. Then, under Assump-
tions 1, 2 and 4, for a generic model � (that is, for all � in an open and
dense subset of B), the set of excluded consumers at the solution has
positive measure.

That is, if the problemhas a continuous solution, Assumptions 1,
2 and 4 ensure that, generically, there will be exclusion.

Remark 2. The conditions in Theorem 2 are strictly more general
than the conditions in the literature. In particular, the inclusion
of a rightward-slanted diamond kind of type space as one of the
allowed type spaces (part (iii) of Assumption 4) is without loss
of generality. It is only when combined with parts (i) and (ii) of
Assumption 4 that part (iii) has a (mild) bite.

10 See Hirsh (1976) for a definition of the C1 topology. Intuitively, proximity in the
C1 topology means proximity of values and first derivatives.
11 See Golubitsky and Guillemin (1973) for the relevant concepts in the theory of
transversality. The version we use can be found in Mas-Colell et al. (1995, Theorem
M.E.2).

3. Discussion

We now provide some geometric and economic intuition be-
hind our results. Let us start with the setting in Armstrong (1996),
illustrated in Fig. 1 below. The type space ⌦ is a strictly convex
set in Rm, for instance, a ball. At the solution, we compute the sur-
plus function as in (5) above, and consider the iso-surplus hyper-
surfaces s�1

" = {↵ 2 ⌦ : s(↵) = "}, for some " 2 R+. Under
Armstrong’s (1996) assumptions, the surplus function is convex,
so, in the two-dimensional case illustrated in Fig. 1, s�1

" is a con-
cave curve. The set of types below s�1

" are the types enjoying less
than " surplus. If the set of excluded types is of measure zero, then
s�1
0 will (in the case depicted) be tangent to the boundary @⌦ of⌦ .
Now consider increasing the tariff by " > 0 so that types below s�1

"
find it optimal to not participate.We argue that, for themonopolist,
the loss in profit from losing these types ismore than compensated
by the gain in profit obtained by selling at a uniformly higher tariff
for every type above s�1

" . In fact, the gain in profit is of the order
O("). The loss is proportional to the region below s�1

" , which, for
small ", is approximately a simplex with height

h = "

krs(↵)k ,

for some ↵ in the region, and base given by the m � 1 dimen-
sional measure Hm�1 of the part of the boundary @⌦ below s�1

" .
This measure is in turn proportional to am�1, with

a = " cot(� )

where � is the angle between the normal vectors to s�1
" and @⌦ .

That is, the loss is proportional to am�1hwhich is of the orderO("m).
Hence the loss is infinitely smaller than the gain,which thenmeans
that themonopolist was not optimizing by not excluding a positive
measure of types.

Observe that the logic above breaks down when s�1
0 is parallel

to @⌦ , because then � = 0 and cot(� ) = 1. In fact, when s�1
0

is parallel to @⌦ , the types are essentially one-dimensional (by
identifying the type with the distance from the boundary to the
corresponding iso-surplus hyper-surface) and exclusion need not
be optimal.12

Also note that, when s�1
0 is parallel to @⌦ , the measure of the

intersection of s�1
0 and @⌦ is not Hm�1-null, as opposed to the

case illustrated in Fig. 1. In fact, the logic described above car-
ries through under much more general conditions, as illustrated
in Fig. 2, where the type space is a rightward-slanted diamond and
the iso-surplus hyper-surfaces are more general (that is, are nei-
ther convex nor concave curves in the two-dimensional case illus-
trated). Because the intersection of any iso-surplus hyper-surface
and the boundary of ⌦ is at most a two-point set (in the m-
dimensional case depicted, with m = 2), it is Hm�1-null. Again,
if the set of excluded types is of measure zero, then s�1

0 will inter-
sect @⌦ only at one point, and similarly to the argument above,
increasing the tariff by " > 0 will generate a loss of order O("m)
and a gain of orderO("). In fact, the loss is the area below s�1

" , which
is again approximately a simplexwith height proportional to " and
base of order O("m�1), so it is of order O("m).

Fig. 2 illustrates Theorem1: as long as the boundary structure of
⌦ is such that none of the normal vectors of the components of the
boundary is strictly positive or strictly negative, the intersection of
an iso-surplus hyper-surface and @⌦ will beHm�1-null, and it will
be optimal to exclude a set of positive measure of types.

12 See Basov (2007) for conditions ensuring that multi-dimensional types can be
summarized by a one-dimensional variable.



78 P. Barelli et al. / Journal of Mathematical Economics 54 (2014) 74–83

Fig. 2. The rightward-slanted diamond.

Fig. 3. A more general setting.

Fig. 4. A type space close-by.

In general, the boundary structure of ⌦ may not satisfy As-
sumption 3, as it does in Fig. 2. For instance, consider the situa-
tion in Fig. 3. The iso-surplus hyper-surfaces are again general as
in Fig. 2, the type space is not convex and the boundary structure
fails Assumption 3. In the case illustrated, the intersection of s�1

0
and @⌦ is not Hm�1-null. By increasing the tariff by " > 0, the
measure of types that will optimally not participate is not of or-
der O("m) anymore. It is again given by the types below s�1

" , a set
whose measure is order O("), as it is approximately a hyper-cube,
with base of positive Hm�1 measure and height of ".

Now consider a model ⌦ 0 that is close to the model ⌦ in Fig. 3,
as illustrated in Fig. 4.13 Now we again have a Hm�1-null intersec-
tion of s�1

0 and @⌦ , and the same argument (now with three sim-
plices of order O("m)) establishes that the cost of increasing the
tariff by " is of order O("m) and the gain is of order O(") if there
was no exclusion. That is, Fig. 4 illustrates Theorem 2: generically,
the intersection of the boundary structure of a type space and the
hyper-surface s�1

0 will beHm�1-null, so for a generic type space the
monopolistwill do better by excluding a positivemeasure of types.

4. Examples

Before proceeding to the proofs, let us present some implica-
tions for economic applications, and also some examples to illus-
trate the nature of the results.

13 The depicted iso-surplus curves need not coincide with the ones in Fig. 3, as
the changed type space will affect the choices. But, by continuity, the new curves
will be close to the old ones, so the illustration in Fig. 4 is accurate. We should also
note that both ⌦ and ⌦ 0 are sets of locally finite perimeter satisfying part (ii) of
Assumption 4.

4.1. Applications

We first present a completion of the analysis in Armstrong
(1999) and then an application to involuntary unemployment.

Example 1. Armstrong (1999) reviews Lewis and Sappington’s
(1988) analysis of optimal regulation of a monopolist with two-
dimensional private information. A single product monopolist
faces a stochastic demand function given by q (p) = a + ✓ � p,
where p is the price of the product, a > 0 is a fixed parameter,
and ✓ is a stochastic component to demand, taking values in an
interval

⇥
✓ , ✓

⇤ ⇢ R+. The firm’s cost is represented by the function
C (q) = (c0 + c) q + F , where q is the quantity produced, c0 > 0
and F > 0 are fixed parameters and c is a stochastic component to
the cost, taking values in an interval

⇥
c, c

⇤ ⇢ R+. The firmobserves
both the demand and the cost functions, while the regulator only
knows that ↵ = (✓ , c) is distributed according to a strictly positive
continuous density function f (✓ , c) on the rectangle⌦ = ⇥

✓ , ✓
⇤⇥⇥

c, c
⇤
. For feasibility, we assume that a+✓ > c0+c , i.e., the highest

demand exceeds marginal costs, for all possible realizations of the
stochastic components of demand and cost.

The regulator wants to maximize social welfare and presents to
the monopolist a menu of contracts {p, t(p)}, where a contract has
the monopolist sell the product at unit price p and pay a tax t(p)
to the regulator. Negative values of t represent subsidies. Social
welfare is given by the sum of the consumers’ surplus 1

2 (a + ✓ �
p)2 and profits pq(p) � c(q) � t(p). Let us employ a change of
variables to represent the problem of the regulator in the form of
the problem in Section 2. Set x = p, and X = (c0 + c, a+ ✓) as the
set of feasible prices; let

⌫(↵, x) = (a + ✓ � x)(x � c0 � c) � F

be the profit before the tax, and let

c(x) = �1
2
(a + ✓ � x)2 � (a + ✓ � x)(x � c0 � c) + F + t(x)

be the negative of welfare net of taxes. Finally, let x0(↵) be the
outside option yielding s0(↵) = 0.

The problem of the regulator is to select a tax schedule t : X !
R to solve

max
Z

⌦

(t(x(↵)) � c(x(↵)))f (↵)d↵,

where x(↵) satisfies
8
><

>:

x(↵) 2 argmax
x2X

⌫(↵, x) � t(x) if max
x2X

⌫(↵, x) � t(x) � 0
x(↵) = x0(↵) otherwise.

The choice of x (↵) by the monopolist depends on whether she can
derive nonnegative returns when producing. If that is not possible,
she will choose the outside option x0(↵).

Lewis and Sappington (1988) assume that the parameter a can
be chosen sufficiently large relative to parameters F and c0 so that a
firm will always find it in its interest to produce, even for the very
small values of ✓ . However, Armstrong (1999) shows that such a
hypothesis cannot be made when ⌦ is the square [0, 1] ⇥ [0, 1].
Furthermore, when ⌦ is a strictly convex subset of this square,
Armstrong (1999) uses the optimality of exclusion theorem in
Armstrong (1996) to show that some firms will necessarily shut
down under the optimal regulatory policy. Armstrong (1999) then
adds ‘‘. . . I believe that the condition that the support be convex
is strongly sufficient and that it will be the usual case that exclu-
sion is optimal, even if a ismuch larger than themaximumpossible
marginal cost’’. That insight could not be pursued further due to a
lack of a more general result, and Armstrong (1999) switched to a
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discrete-type model in order to check the robustness of the main
conclusions in Lewis and Sappington (1988).

It is clear that the regulator’s problem is essentially the stan-
dard problem solved in Section 2 above. Note that, given the spec-
ification of X above, Assumptions 1 and 2 are met. Assumption 4
is met as soon as we include the rightward-slanted diamonds as
allowed type spaces, as for instance the following slight change
of the square: co{(0, 0), (", 1), (1 + ", 1 + "), (1, ")}, for " > 0,
where ‘‘co’’ stands for convex hull. All the hypotheses of Theorem 2
are satisfied, so we may conclude that a set of positive measure of
firmswill generically be excluded from the regulatedmarket. Arm-
strong’s (1996) conjecture is therefore confirmed, generically.

We can actually say more about the matter for the given type
space. The gradient of the surplus s(↵) is rs(↵) = (x(↵) � c0 �
c, a � ✓ � x(↵)), and the boundary of the square is described by
gi, i = 1, . . . , 4 with rgi(↵) = (1, 0) for i = 1, 3 and rgi(↵) =
(0, 1) for i = 2, 4. Hence the rank of
✓rs(↵)

rgi(↵)

◆

is equal to two for i = 1, . . . , 4, meaning that the iso-surplus
curves are never parallel to the boundaries of the square (as x(↵) 2
X for every ↵). Hence, even though the square [0, 1] ⇥ [0, 1] vio-
lates Assumption 3, the intersection of the iso-surplus curves and
the boundary of the type space will be H1-null, as long as the iso-
surplus curves do not become asymptotically vertical or horizontal
as x gets close to the boundaries of X . If the set of allowed prices is
chosen to be an interval strictly inside of (c0+1, a) = (c0+c, a+✓),
then the gradient rs(↵) will be bounded away from (1, 0) and
(0, 1), and the iso-surplus curves will never be either almost verti-
cal or almost horizontal. As a result, the intersection of s�1

0 (recall
the arguments and notation from Section 3) and the boundary of
the squarewill beH1-null, so an " increase in the subsidy schedule
from a situation with no exclusion will lose an order O("2) of firms
and generate a gain of order O("). Again, this establishes that the
regulator will exclude a positive mass of firms. Importantly, ob-
serve that restricting X to be strictly inside of (c0 + 1, a) goes in
line with Lewis and Sappington’s (1988) idea that a firm will al-
ways find in its interest to produce. In fact, such a restriction can
be viewed as avoiding a priori exclusion, for prices below cost or
above the highest demand for a given type of the firmwill certainly
exclude the firm. Yet, due to the geometry of exclusion, not exclud-
ing firms a priori necessarily leads to exclusion of a positive mass
of firms once the optimal contract is implemented. ⇤

Example 2. Another interesting application concerns the emer-
gence of involuntary unemployment as a consequence of adverse
selection. Consider a firm in an industry that produces n goods cap-
tured by a vector x 2 X ⇢ Rn+. The firm hires workers to produce
these goods. A worker is characterized by the cost she bears in or-
der to produce goods x 2 Rn+, which is given by the effort cost
function e (↵, x). The parameter ↵ 2 ⌦ ⇢ Rm is the worker’s un-
observable type distributed on an open, bounded set ⌦ ⇢ Rm ac-
cording to a strictly positive, continuous density function f .

Therefore, if a worker of type ↵ is hired to produce output x and
receives wage ! (x), her utility is ! (x) � e (↵, x), where e(↵, ·)
is cost of effort, which depends on the type of the worker. If the
worker is not hired by the firm, she will receive a net utility s0 (↵),
either by working for a different firm, or by receiving unemploy-
ment compensation.

Let p : X ! R+ denote the revenue function that the firm faces,
and assume it is a concave function.

The firm’s problem is to select a wage schedule ! : Rn+ ! R to
solve

max
Z

⌦

[p(x(↵)) � ! (x (↵))] f (↵)d↵,

where x(↵) satisfies
8
><

>:

x(↵) 2 argmax
x2X

!(x) � e(↵, x) if max
x2X

!(x) � e(↵, x) � s0 (x)
x(↵) = 0 otherwise.

Consider the following change in variables: t (x) = �! (x) ,
⌫(↵, x) = �e(↵, x), c(x) = �p(x). Then the firm’s problem can
be rewritten as

max
Z

⌦

(t(x(↵)) � c(x(↵)))f (↵)d↵,

where x(↵) satisfies
8
><

>:

x(↵) 2 argmax
x2X

⌫(↵, x) � t(x) if max
x2X

(⌫(↵, x) � t(x)) � s0 (x)
x(↵) = 0 otherwise.

Therefore, the arguments for the monopolist screening problem
can be extended to the hiring decision of the firm. In particular,
the firm will generically find it optimal not to hire a set of positive
measure. If the firm is a monopsonist in the sense that agents can
work only at that firm, then our main result provides a rationale
for involuntary unemployment. ⇤

4.2. No-exclusion is knife-edge

The next three examples illustrate why the main result is only
about the generic case. There are non-generic cases where no con-
sumer is excluded.

Example 3. Consider a problem that yields an excluded set ⌦0
with positive measure, and modify the problem by considering
only the types in ⌦ \ ⌦ 0, where ⌦0 ⇢ ⌦ 0. Would the modified
problem have no exclusion? The answer is yes if ⌦ 0 = ⌦0, but the
answer is no if⌦ 0 is a generic superset of⌦0.14 That is, the shape of
⌦ 0 has to bear a tight relation to the shape of⌦0 for no exclusion to
hold in the model ⌦ \ ⌦ 0. And of course, even if this tight relation
holds, a slight change in the boundary structure of⌦ would suffice
for us to have exclusion in the modified model. ⇤

Example 4. Consider the example presented by Rochet and Stole
(2003). The quasilinear utility of agent of type ↵ is given by

⌫(↵, x) = (↵1 + ↵2)x

and ⌦ is a rectangle with sides parallel to the 45° and �45° lines.
Rochet and Stole argued that one can shift the rectangle sufficiently
far to the right to have an empty exclusion region. Their result
is driven by the fact that they allow only very special collections
of type spaces, rectangles with parallel sides. Formally, the type
spaces allowed violate Assumptions 3 and 4(iii) as the boundary
structure is given by r↵gi(↵, �) = (1, 1) 2 R2+ for i = 1, 3 and
r↵gi(↵, �) = (�1, 1) for i = 2, 4 (where i labels, in a clockwise
fashion starting from the southwest side, the sides of a rectangle
with sides parallel to the 45° and �45° lines, and � represents
right-shifts of such rectangles). In fact, note that (using u(↵, x) =
⌫(↵, x) because s0(↵) = 0)
✓ r↵u(↵, x)

r↵gi(↵, �)

◆
=

✓
x x
1 1

◆

for i = 1, 3, so it is a matrix of rank equal to 1, which means
that the iso-surplus curves (more precisely, lines) are parallel to

14 We are grateful to an anonymous referee for this observation.
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the downward sloping sides of the type space.15As we saw in Sec-
tion 3, in such cases the cost-benefit analysis does not lead us to
conclude that exclusion is optimal (in fact, as argued there as well,
this is a casewhere types can be summarized by a one-dimensional
variable, so the particularities of the multi-dimensional setting are
lost).

Observe that a very small change in the type set changes that
result. Consider, for example, a slightly perturbed type space, with
r↵gi(↵, �0) = (1, 1 + "), for i = 1, 3, where " > 0 is a small
positive real number. Then, for all x 6= 0 and i = 1, . . . , 4

rank
✓ r↵u(↵, x)

r↵gi(↵, �0)

◆
= 2,

so that the iso-surplus lines will cut transversally the boundary of
the perturbed type space. As a result, the intersection of these two
will be H1-null and, using the argument in Section 3, we obtain
that exclusion is optimal. In words, Rochet and Stole (2003) is a
knife-edge case of no exclusion: slight perturbations of the bound-
ary structure of their type spaces suffice to generate exclusion. ⇤

Example 5. Consider the model of Armstrong and Vickers (2001),
which allows for multi-dimensional vertical types. In this kind of
models, the type consists of a vector of vertical characteristics,
↵ 2 ⌦ ⇢ Rm as in Section 2, and a parameter � 2 [0, 1] captur-
ing horizontal preferences. The type space is given by the Cartesian
product ⌦ ⇥ [0, 1] and � is assumed to be distributed indepen-
dently of ↵. The utility of a consumer is given by

⌫(↵, x; � ) = �(↵, x) � r� ,

where r is a commonly known parameter, and x 2 X ⇢ Rn+ is
the vector of goods. Let �(↵, 0) = 0 so that the iso-surplus hyper-
surface corresponding to x = 0 is r� = constant, which is par-
allel to the vertical boundary of the type space, � = 0. Therefore,
in such a model there is the possibility of no exclusion. The model
was also investigated in an oligopolistic setting, where r was inter-
preted as a transportation cost for the Hotelling model. Conditions
for no exclusion under different assumptions on the dimension-
ality of ↵ and the monopolist’s risk preferences were obtained by
Armstrong and Vickers (2001), Rochet and Stole (2002) and Basov
and Yin (2010). Nevertheless, these are all knife-edge cases. In fact,
let us parametrize the boundary of the set ⌦ so that it is described
by the equation

g0(↵) = 0

and embed our problem into a family of problems, for which the
boundary of the type space is described by the equation

g(↵, � ; �) = 0,

where g(·, �) : ⌦ ⇥ [0, 1] ! R is a C1 function with

g(↵, � ; 0) = g0(↵)(g0(↵) � b)� (� � 1)

for some constant b. Note that this establishes that, for � = 0 the
type space is the cylinder over the set ⌦ considered by Armstrong
and Vickers (2001) for which the exclusion region is empty.16 But
under Assumption 4, among the possible underlying type spaces
therewill be at least onewith boundarieswithHm�1-null intersec-
tions with the iso-surplus curves. For this type space the exclusion
region will be non-empty. And a standard transversality argument
establishes that the same is true for almost all � . ⇤

15 Observe that here r↵u(↵, x(↵)) is the gradient of the surplus function, rs(↵).
16 The level set g(↵, � , 0) = 0 of the displayed equation is exactly the said
cylinder.

4.3. An illustration of the assumptions

We conclude this list of examples with an illustration of
Assumptions 1–4.

Example 6. Consider a consumer who lives for two periods. Her
wealth in the first period is w and inthe second period her wealth
can take twovalues,wH orwL. Let pbe the probability thatw = wH ,
and let � 2 (0, 1) be the discount factor, so that the private in-
formation of the consumer is characterized by a two-dimensional
vector↵ = (1�p, 1��). The consumer’s preferences are given by:

V (c1, c2) = �(c1) + �E�(c2)

where c1 and c2 are the consumption levels in periods 1 and 2 re-
spectively, and �(·) is increasing with its derivative � 0 bounded
away from zero. Assume that wealth is not storable between peri-
ods. Instead, the consumer can borrow x from a bank in period 1,
and repay t in period 2 if w = wH , and to default if w = wL in pe-
riod 2. If the consumer does not borrow, her expected utilitywill be

s0(↵) = �(w) + �(p�(wH) + (1 � p)�(wL)),

which is the type dependent outside option. If she borrows x and
repays t , the expected utility will be

v(↵, x, t) = �(w + x) + �(p�(wH � t) + (1 � p)�(wL)),

which is strictly increasing in x and strictly decreasing in t . Let ⌦1
= (0, 1)2 be the type space, with boundary captured by gi(↵, �1),
i = 1, . . . , 4, with r↵gi(↵, �1) = (0, 1) for i = 1, 2 and r↵gi(↵,
�1) = (1, 0) for i = 3, 4. Assumption 3 is violated by ⌦1. But
let ⌦2 be another type space, included in the underlying space of
type spaces, with boundary given by gi(↵, �2), i = 1, . . . , 4, with
r↵gi(↵, �2) = (�", 1) for i = 1, 2 and r↵gi(↵, �2) = (1, �") for
i = 3, 4, for some " > 0. Assumption 4(iii) is thus met.

As

r↵u (↵, x) =
✓

1�

p� 0 ,
1�

�� 0

◆
,

where 1� = �(wH) � �(wH � u (↵, x)) > 0, Assumptions 1 and
2 are met as well. ⇤

Example 6 above is a natural setting to discuss unavailability of
credit to some individuals, which is important to justify monetary
equilibria in the search theoretic models of money.17

5. Conclusion

We showed that, in general, exclusion is optimal in multi-
dimensional monopolistic screening problems. In particular, we
providednovel sufficient conditions for exclusion and showed that,
under a sufficiently rich underlying set of type spaces, if one such
type space satisfies the sufficient conditions for exclusion, then
exclusion obtains for a generic type space. The results rely on
the straightforward geometric idea that if the iso-surplus hyper-
surfaces cut the boundary of the type space transversally, then the
monopolist cannot be optimizing by including a set of full measure
of types: a slight uniform increase in the tariff will certainly
increase profits, as only a negligible fraction of types will drop out.

17 See, for example, Lagos and Wright (2005).
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Appendix. Proofs

Wedivide theproofs into several intermediate steps. LetK(Rm)
be the hyperspace of compact sets in Rm, endowed with the topol-
ogy induced by the Hausdorff distance dH , given by
dH(E, F) = inf{" > 0 : E ⇢ F ", F ⇢ E"},
where
E" =

[

↵2E

B(↵, ")

and B(↵, ") is the open ball centered at ↵ and with radius " > 0.
Because
lim

"!0+ Lm(E") = Lm(E), lim
"!0+ H s(E") = H s(E)

for all s � 0, both Lm and H s are upper semicontinuous functions
in K(Rm) (Beer, 1975).

Lemma 1. Let E 2 K(Rm) be such that Lm(E) = H s(E) = 0, for
some s � 0, and let (Ek)k�1 be a sequence in K(Rm) such that Ek !
E. Then Lm(Ek) ! 0 and H s(Ek) ! 0.

Proof. Because Lm is a non-negative upper semicontinuous set
function, we have

lim inf
Ek!E

Lm(Ek) � 0 = Lm(E) � lim sup
Ek!E

Lm(Ek),

so Lm(Ek) ! 0, and analogously for H s. ⇤

That is, Lemma 1 establishes continuity of Lebesgue and
Hausdorff measures at zero.

Let us write ⌦0 = {↵ 2 ⌦ : s(↵) = 0}, where s(↵) is the
surplus obtained by type ↵. Extending s by continuity to @⌦ , let
⌦0 = {↵ 2 ⌦ : s(↵) = 0}. We also extend x by continuity to @⌦ .

Lemma 2. Under Assumption 1, Lm(⌦0) = 0 implies ⌦0 ⇢ @⌦ .

Proof. If ⌦0 6✓ @⌦ , there is ↵ 2 ⌦0 and " > 0 with B(↵, ") ⇢ ⌦ .
Then

Lm({↵̂ 2 ⌦ : ↵̂  ↵} \ B(↵, ")) > 0.

Because of Assumption 1, we cannot have s(↵̂) > 0 for any ↵̂  ↵,
for otherwise s(↵) > 0 as well. So

{↵̂ 2 ⌦ : ↵̂  ↵} \ B(↵, ") ⇢ ⌦0,

contradicting Lm(⌦0) = 0. ⇤

Lemma 2 states that if the exclusion set has Lebesgue measure
zero it should be part of the topological boundary of the type set.
Assumption 1 is crucial for this result. If it does not hold it is easy
to come up with counter-examples even in the one-dimensional
case. For examples, see Jullien (2000).

Let ŝ solve the monopolist’s problem without the participation
constraint. Note that ⌦0 can be expressed as
⌦0 = {↵ 2 ⌦ : ŝ(↵)  s0(↵)}.
Now decompose it as

⌦0 = ⌦
1
0 [ ⌦

2
0,

where ⌦
1
0 = {↵ 2 ⌦ : ŝ(↵) < s0(↵)} and ⌦

2
0 = {↵ 2 ⌦ : ŝ(↵) =

s0(↵)}.

Lemma 3. Lm(⌦
2
0) = 0.

Proof. If⌦0 = ; then there is nothing to prove. So assume it is not
empty, pick ↵, ↵̂ 2 ⌦

2
0, with ↵̂  ↵ and ↵̂ 6= ↵. Then u(↵̂, x(↵̂))

= t(x(↵̂)) because v(↵̂, x(↵̂), t(x(↵̂))) = s0(↵̂). By Assumption 1,

u(↵, x(↵̂)) > u(↵̂, x(↵̂))

and, because v is strictly decreasing in t ,

s0(↵) = v(↵, x(↵̂), u(↵, x(↵̂))) < v(↵, x(↵̂), t(x(↵̂))).

But s0(↵) = v(↵, x(↵), t(x(↵))), so the inequality contradicts the
optimality of x(↵) for type ↵. Therefore wemust have ↵ 62 ⌦

2
0. The

same argument shows that if ↵ 2 ⌦
2
0 and ↵̂  ↵, then ↵̂ 62 |w2

0,
for otherwise ↵ could not be in ⌦

2
0 in the first place. So for any pair

(↵, ↵̂) in ⌦
2
0, we must have ↵ 6 ↵̂ and ↵̂ 6 ↵. But this means that

⌦
2
0 is a porous set: for any ↵ 2 ⌦

2
0 and r > 0, there is a r/8-ball

inside of the r-ball centered at ↵ and disjoint from ⌦
2
0. Porous sets

in Rm have zero Lm-measure.18 ⇤

Lemma 4. The surplus function s : ⌦ ! R is Lipschitz continuous.

Proof. Take ↵ and ↵0 and a linear path � connecting these two
points. Then

|s(↵) � s(↵0)| =
�����

Z ↵0

↵

rv(� (⇠), x(� (⇠)), t(x(� (⇠)))) · � 0(⇠)d⇠

�
Z ↵0

↵

rs0(� (⇠)) · � 0(⇠)d⇠

����� .

As⌦ is compact and the functions involved are continuous, we can
find a common upper bound K for the integrands. As we are in-
tegrating over the line connecting ↵ and ↵0 of length k↵ � ↵0k,
the right hand side is bounded by Kk↵ � ↵0k, establishing the
result. ⇤

Lemma 5. Under Assumptions 1 and 3, if Lm(⌦0) = 0 then
Hm�1(⌦0) = 0.

Proof. By Lemma 2, ⌦0 ⇢ @⌦ . Because Hm�1(@⌦ \ @e⌦) = 0,
consider ⌦0 \ @e⌦ , which is given by

⌦0 \ @e⌦ =
1[

i=1

⌦0i [ (N \ ⌦0),

where

⌦0i = {↵ 2 ⌦ : gi(↵) = 0, s(↵) = 0}
for i � 1. Now Assumptions 1 and 3 ensure that the vectors rs(↵)
and r↵gi(↵) are linearly independent, for all i � 0. Hence, by
the Implicit Function Theorem,19 ⌦0i is a manifold of dimension
at mostm � 2. So Hm�1(⌦0i) = 0. Hence

Hm�1(⌦0 \ @e⌦) 
1X

i=1

Hm�1(⌦0i) + Hm�1(N \ ⌦0) = 0,

as we wanted to show. ⇤

18 See Zají£ek (2005) for a reference on porous sets.
19 See Theorem M.E.1 in Mas-Colell et al. (1995).
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We are now ready to prove Theorem 1. We will use the Gen-
eralized Gauss–Green Theorem, which states that for any ⌦ with
locally finite perimeter in U ⇢ Rm, and any Lipschitz continuous
vector field ' : U ! Rm with compact support in U there is a
unique measure theoretic unit outer normal ⌧⌦(↵) such that
Z

⌦

div'd↵ =
Z

U
' · ⌧⌦dHm�1,

where

div' =
mX

k=1

@'k

@↵k

is the divergence of the vector field '.

Proof of Theorem 1. By way of contradiction, assume that
Lm(⌦0) = 0. Let k be a positive integer and denote by⇡k the profit
obtained by selling to the types in

⌦k =
⇢
↵ 2 ⌦ : s(↵)  1

k

�
.

An implication of Lemma 4 is that ⌦k is a set of locally finite
perimeter in the open set U . Indeed, Lipschitz domains are of lo-
cally finite perimeter (Pfeffer, 2012, Proposition 4.5.8.), so the es-
sential boundary of ⌦k is of locally finite Hm�1 measure.

Because c is non-negative, we must have

⇡k 
Z

⌦k

t(x(↵))f (↵)d↵,

and from (4) we have

⇡k 
Z

⌦k

u(↵, x(↵))f (↵)d↵.

Observe that withLm(⌦0) = 0we haveLm(⌦k) = Lm(⌦k \⌦0),
so the envelope condition holds for almost all types in⌦k. Assump-
tion 2 and the implication of the envelope condition (6) yield

⇡k  K
Z

⌦k

↵ · rs(↵)�(↵)f (↵)d↵.

Observe that � : ⌦ ! R is uniformly continuous because it
is continuous and ⌦ is compact. So � is the uniform limit of a se-
quence of Lipschitz continuous functions (Georganopoulos, 1967).
Hence, for each e > 0, let �" be a Lipschitz continuous function
such that sup↵2⌦ k�"(↵) � �(↵)k < �, where � > 0 is chosen so
that

⇡k  K
Z

⌦k

(↵ · rs(↵))�"(↵)f (↵)d↵ + ".

Applying the Generalized Gauss–Green Theorem to the Lipschitz
continuous vector field '(↵) = ↵s(↵)�"(↵)f (↵), and using
div(↵s�"f ) = sdiv(↵�"f ) + �"f ↵ · rs, we get

⇡k  K
Z

U
s(↵)�"(↵)f (↵)(↵ · ⌧⌦(↵))dHm�1(↵)

� K
Z

⌦k

s(↵)div(↵�"(↵)f (↵))d↵ + ".

The functions s, �", f , ↵ · ⌧⌦ and div(↵�"(↵)f (↵)) are bounded in
⌦k, so we can find a common upper bound B. Because s(↵)  1

k in
⌦k and supp(f ) = ⌦ , we have

⇡k  1
k
B(Hm�1(⌦k) + Lm(⌦k)) + ".

Now consider increasing the tariff by 1
k . The consumers in the set

⌦k will exit, and ⇡k will be lost, but each other consumer will pay

1
k more. Because the total mass of consumers that exit is bounded
by BLm(⌦k), the change in profit is

1⇡ � 1
k
[(1 � BLm(⌦k)) � B(Hm�1(⌦k) + Lm(⌦k))] � ".

From Lemma 5, Hm�1(⌦0) = 0, and hence from Lemma 1 we
have Lm(⌦k) ! 0 and Hm�1(⌦k) ! 0, because, by continuity of
s and the compact support of f , each ⌦k is compact. But then for
large k, we select "k 2 (0, 1�g(k)

k ), where g(k) = B[2Lm(⌦k) +
Hm�1(⌦k)], so that 1⇡ is positive, contradicting the optimality of
the tariff. ⇤

Moving to Theorem 2, let us keep track of which type space we
are dealing with. That is, let us write ⌦0,� = {↵ 2 ⌦� : s(↵; �) =
0}, where s(↵; �) is the surplus function obtained by type ↵ when
the underlying type space is ⌦� . Likewise, we shall make explicit
the dependence of the relevant object on the underlying type space
indexed by � 2 B, viz. x(↵; �), x0(↵; �), etc. Extending s(·; �) by
continuity to @⌦� , let ⌦0,� = {↵ 2 ⌦� : s(↵; �) = 0}. We also
extend x(·; �) by continuity to @⌦� .

Note that Lemmas 2–4 hold true for any type space ⌦� , � 2 B.
Lemma 5 has to be reformulated as follows:

Lemma 6. Under Assumptions 1 and 4, if Lm(⌦0,�) = 0 for all �
in some open subset V ⇢ B , then there exists � 0 2 V such that
Hm�1(⌦0,� 0) = 0.

Proof. By Lemma 2, ⌦0,� ⇢ @⌦� for all � 2 V . Because
Hm�1(@⌦� \ @e⌦�) = 0, consider ⌦0,� \ @e⌦� , which is given
by

⌦0,� \ @e⌦� =
1[

i=1

⌦0i,� [ (N� \ ⌦0,�),

where

⌦0i,� = {↵ 2 ⌦� : gi(↵, �) = 0, s(↵; �) = 0}
for i � 1. Fix a � 2 V . Assumptions 1 and 4(iii) ensure that there is
�̂ 2 B forwhich the level sets of s(↵; �) are transversal to gi(↵, �̂),
for all i � 1. The Transversality Theorem20 then implies that, for
each i, there exists a setMi 2 B of full measure such that the level
sets of s(↵; �) are transversal to the level sets of gi(↵, � 0), for all
� 0 2 Mi. Let M = T1

i=1 Mi, and note that M also has full measure
as the measure of its complement is zero. Thus, for all � 0 2 M , the
level sets of gi(↵, � 0) are transversal to the level sets of s(↵; �), and
hence for any neighborhood of � there exists � 0 such that the level
sets of gi(↵, � 0) are transversal to the level sets of s(↵; �), for all
i � 1.

Observe that, by compactness of Ki,� 0 , the set {↵ : gi(↵, � 0) =
s(↵; �) = 0} is finite. Let it be given by {↵1, . . . ,↵Li}. Let ✓

`i
i de-

note the angle between r↵gi(↵`i , � 0) and rs(↵`i; �), where `i 2
{1, . . . , Li}. Because of transversality, ✓`i

i 2 (0, ⇡), for all `i and i.21

For each i, let "i > 0 be such that ✓
`i
i 2 ("i, ⇡ � "i), for `i =

1, . . . , Li. Let Ui be an open neighborhood of gi (in the C1 topol-
ogy) such that all functions ĝ 2 Ui, at points ↵ where ĝ(↵) =
s(↵; �) = 0, have the angles between r ĝ(↵) and rs(↵; �) within
"i/2 of the corresponding angles ✓

`i
i . By part (ii) of Assumption 4,

there is a finite collection {U1, . . . ,Un} (after relabeling the indices)
that covers the family {gi}i�1. Let d = min{"1, . . . , "n}/2 and note

20 Theorem M.E.2 in Mas-Colell et al. (1995).
21 Here ⇡ denotes the irrational number ⇡ = 3.14159 . . . , and not the profit of
the monopolist.
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that ✓`i
i 2 (d, ⇡�d) for all `i and i. Observe that, by (5), the optimal

tariff t must be continuous, as it is the upper envelope of a family
of continuous functions. By continuity of x(↵; �) in � and continu-
ity of rs0 in � , for all � 0 sufficiently close to � the angles between
rs(↵`i; � 0) and rs(↵`i; �) are at most d/4 apart, for all `i and all
i, as rs(↵; � 0) = r↵v(↵, x(↵; � 0), t(x(↵; � 0))) � rs0(↵; � 0). Fur-
ther, for � 0 close enough to � , it must be the case that the angles
✓

`i
i are at most d/4 apart from the corresponding angles at the new

points where gi(↵, � 0) = s(↵; � 0) = 0. Hence the angles where
the level sets of s(↵; � 0) and of gi(↵, � 0) intersect must fall in the
interval (d/2, ⇡ � d/2), so the level sets of s(↵; � 0) are transversal
to the level sets of gi(↵, � 0), for i � 1. Observe that we can choose
� 0 close enough to � so that � 0 2 V .

By the Implicit Function Theorem, for every i, Hm�1(⌦0i,� 0) =
0 as ⌦0i,� 0 is a manifold of dimension at mostm � 2. Hence

Hm�1(⌦0,� 0 \ @e⌦� 0) 
1X

i=1

Hm�1(⌦0i,� 0)

+ Hm�1(N� 0 \ ⌦0,� 0) = 0,

as we wanted to show.22 ⇤

Lemma 6 provides the basic step in establishing denseness of
the set ofmodels where exclusion occurs with positive probability.
It is a straightforward application of the standard Transversality
Theorem. Nevertheless, it shows that Assumptions 1 and 4 are
potent, despite being weak.

Let E ⇢ B be the set of models where the set of excluded con-
sumers has positive measure:

E = {� 2 B : Lm(⌦0,�) > 0}.
Note that the set {↵ 2 ⌦0,� : x(↵) 6= x0(↵)} is contained in ⌦

2
0,� ,

so Lemma 3 ensures that E is indeed the set of models where the
set of excluded consumers has positive measure.

Proof of Theorem 2. We shall show that E is an open and dense
subset of B. We start with denseness, using again the Generalized
Gauss–Green Theorem.

By way of contradiction, assume that Lm(⌦0,�) = 0 for all � in
some open set V ⇢ B. For any natural number k, let ⇡k,� be the
profit obtained by selling to the types in

⌦k,� =
⇢
↵ 2 ⌦� : s(↵; �)  1

k

�
.

The exact same steps as in the proof of Theorem1 establish that,
for each� 2 V , the change in profit from increasing the tariff by 1

k is

1⇡� � 1
k

⇥
(1 � BLm(⌦k,�)) � B(Hm�1(⌦k,�)

+ Lm(⌦k,�))
⇤ � ".

From Lemma 6, there exists � 0 2 V withHm�1(⌦0,� 0) = 0, and
hence from Lemma 1 we have Lm(⌦k,� 0) ! 0 and Hm�1(⌦k,� 0)
! 0, because, by continuity of s(·; � 0) and the compact support
of f (·), each ⌦k,� 0 is compact. But then for large k, we select "k 2
(0, 1�g(k)

k ), where g(k) = B[2Lm(⌦k,� 0) + Hm�1(⌦k,� 0)], so that
1⇡� 0 is positive, contradicting the optimality of the tariff for the
model � 0. Therefore, we must have Lm(⌦0,� 0) > 0. As V was arbi-
trary, E is dense, as we wanted to show.

22 In fact, we established the stronger result that the set of � 0 such that
Hm�1(⌦0,� 0 ) = 0 is dense in V .

As for openness on E in B, recall that ⌦0,� = ⌦
1
0,� [ ⌦

2
0,� . By

continuity of ŝ(·; �) and s0(·; �), ⌦
1
0,� is an open set. By Lemma 3,

⌦
2
0,� has zero Lebesgue measure. E 6= ; as it is dense, so take

� 2 E , and note that ⌦
1
0,� 6= ;. Pick c > 0 such that the open

set C� = {↵ 2 ⌦� : ŝ(↵; �) � s0(↵; �) < �c} is included in ⌦
1
0,� .

Pick ↵ in the interior of C� so that gi(↵, �) > 0 for all i � 1. For
each i, let "i > 0 be such that gi(↵, �) > "i, and let Ui be an open
neighborhood of gi (in the C1 topology) such that ĝ(↵) > "i/2 for
all functions ĝ 2 Ui. By part (ii) of Assumption 4, there is a finite
collection {U1, . . . ,Un} (after relabeling of indices) that covers the
family {gi}i�1. Let d = min{"1, . . . , "n}/2 and note that gi(↵, �) >
d for every i � 1. By the same compactness assumption, we can
choose "0 > 0 and �0 > 0 such that |gi(↵0, � 0) � gi(↵, �)| < d/2
whenever (↵0, � 0) 2 B"0(↵) ⇥ B�0(�), for every i � 1. It follows
that B"0(↵) ⇢ ⌦� 0 for every � 0 2 B�0(�). Let h(↵; �) = ŝ(↵; �) �
s0(↵; �) and pick " 2 (0, "0) and � 2 (0, �0) such that |h(↵0; � 0) �
h(↵; �)| < c/2 whenever (↵0, � 0) 2 B"(↵) ⇥ B�(�). It follows
that h(↵0; � 0) < 0 for all (↵0, � 0) 2 B"(↵) ⇥ B�(�). Summing up,
B"(↵) ⇢ ⌦0,� 0 and hence Lm(⌦0,� 0) > 0, for every � 0 2 B�(�), as
we wanted to show. ⇤
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