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1. Introduction

When considering the problem of screening, where sellers
choose a sales mechanism and buyers have private information
about their types, it is well known that the techniques used in
the multi-dimensional setting are not as straightforward as those
in the one-dimensional setting. As a consequence, while we have
a host of successful applications with one-dimensional types, to
date we have only a few scattered papers that allow for multi-
dimensional types. This is unfortunate because in many, if not
most, economic applications multi-dimensional types are needed
to capture the basic economics of the environment, and the propo-
sitions coming from the one-dimensional case do not necessarily
generalize to the multi-dimensional case.

One intriguing result in the theory of multi-dimensional screen-
ing comes from Armstrong (1996), who shows that a monopolist
will find it optimal to not serve some fraction of consumers, even
when there is positive surplus associated with those consumers.
That is, in settings where consumers might differ in at least two
characteristics, monopolists will choose a sales mechanism that
excludes a positive measure of consumers. The intuition behind
this result is as follows: consider a situation where the monopolist
serves all consumers; if she increases the price by ¢ > 0 she earns
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extra profits of order O(¢) on the consumers who still buy the prod-
uct, but will lose only the consumers whose surplus was below ¢;
if the dimension of the vector of consumers’ taste characteristics is
greater than one, the space of such vectors is strictly convex, and
the surplus function is quasi-convex, then the measure of the set
of the lost consumers is of order O(¢™); therefore, it is profitable to
increase the price and exclude some consumers. In principle, this
result has profound implications across a wide range of economic
settings. The general belief that heterogeneity of consumer types
is likely to be more than one-dimensional in nature, for many dif-
ferent commodities, and that these types are likely to be private
information, underlines the significance of Armstrong’s result.?
Moreover, the intuition provided above seems to be robust, i.e.,
seems to not depend on particular technical details of the model.
However, Armstrong’s (1996) result was derived under a rel-
atively strong set of assumptions, which could be seen as limiting
its applicability, and subsequent research has identified conditions
under which the result does not hold. In particular, in addition to
assuming that types belong to a strictly convex and compact body
of a finite dimensional space, Armstrong obtains quasi-convexity of
the surplus function by assuming that the utility functions of the
agents are quasi-linear, homogeneous and convex in their types.

2 The type of an economic agent is simply her utility function. If one is agnostic
about the preferences and does not want to impose on them any assumptions
beyond, perhaps, monotonicity and convexity, then the most natural assumption
is that the type is multi-dimensional.
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Basov (2005) refers to this pair of convexity requirements as the
joint convexity assumption and argues that, although convexity of
utility in types and convexity of the types set separately are not re-
strictive and can be seen as a choice of parametrization, the joint
convexity assumption is technically restrictive.

The joint convexity assumption has no empirical foundation
and is nonstandard. For instance, the benchmark case of indepen-
dent types fails joint convexity because the type space is the not
strictly convex multi-dimensional box. There is, in general, no the-
oretical justification for a particular assumption about the curva-
ture of utility functions with respect to types, as opposed to, say,
quasi-concavity of utility functions with respect to goods. In the
same line, in general there is no justification, other than analyti-
cal tractability, for type spaces to be convex, and for utility func-
tions to be homogeneous in types. On the other hand, Armstrong
(1999), Rochet and Stole (2003), Jehiel et al. (1999) and Severinov
and Deneckere (2006) found examples outside of these restrictions
where the exclusion set is empty. That is, the technical conditions
provided by Armstrong (1996) cannot simply be dropped.

It turns out that the conditions can be improved upon. In par-
ticular, there is no need to assume that utility functions are quasi-
linear, homogeneous, or convex in types, or that the type space is
convex. In Theorem 1 we establish that exclusion is optimal when-
ever the utility functions are increasing in types, bounded, and the
boundary structure of the type space is of a particular kind. That is,
our assumptions on the utility functions are substantially weaker
than Armstrong’s, but the assumption on type spaces is non-nested
with his assumption of a strictly convex type space. We do allow
for non-convex type spaces, but the requirement on the boundary
structure need not hold for a given strictly convex type space.

Moreover, we show that the counter-examples found in the lit-
erature are knife-edge cases. In Theorem 2 we establish that exclu-
sion is generically optimal for a monopolist in the family of models
where utility functions are of class C' and monotone in types, and
types belong to sets of locally finite perimeter. The class of sets of
locally finite perimeter is a class of sets that includes all of the ex-
amples the authors are aware of in the literature, and we stress,
includes type spaces that are nowhere close to being convex. That
is, exclusion is generically optimal in a large class of models that
contains the model used by Armstrong.

We illustrate the generality of the results with a few examples
and two applications, namely the regulation of a monopolist with
unknown demand and cost functions, and the emergence of invol-
untary unemployment as a result of screening by employers. The
former application picks up of the analysis in Armstrong (1999),
where he reviews Lewis and Sappington (1988) and conjectures
that exclusion is probably an issue in their analysis. At that time,
Armstrong could not prove the point, due to the lack of a more
general exclusion result. With our results in hand, we are able to
establish that Armstrong’s conjecture is generically true. The latter
application is a straightforward way of showing that, when work-
ers have multi-dimensional characteristics, it is generically opti-
mal for employers (with market power in the labor market) to not
hire all the workers.

In sum, the paper provides evidence to the proposition that pri-
vate information leads to exclusion in many realistic monopolis-
tic settings. To avoid it, one must either assume that all allowable
preferences lie on a one-dimensional continuum, or construct very
specific type distributions and preferences.

The rest of the paper is organized as follows. In Section 2
we present the monopoly problem with consumers with multi-
dimensional characteristics, together with assumptions on the

3 Rightward-slanted diamonds are typical examples of type spaces having
boundary structures of the kinds required for Theorem 1, but the class is much larger
and includes non-convex sets.

underlying parameters under which it is generically optimal to
have exclusion. We present the economic and geometric argu-
ments behind our results in Section 3. Section 4 presents examples
and applications, illustrating further the genericity of exclusion
and the impact of such a fact in economic applications. The proofs
of our results are in the Appendix.

2. Monopolistic screening and results

Consider a firm with a monopoly over n goods. The tastes of the
consumers over these goods are parametrized by a vector « € R’}
The utility of a type @ consumer consuming a bundle x € R} and
paying t € R to the firm is

v(a, X, t),

where v is strictly increasing and strictly concave in x, and strictly
decreasing in t. Our focus is not on relaxing the smoothness as-
sumptions on v, so we will assume that v is twice continuously
differentiable, with v (a, x, t) = % < 0 Lipschitz continu-
ous, bounded below and away from zero. Furthermore, we assume

that v;; = % < Oforalli =1, ..., m* The case of quasilinear
1

preferences v(«, x, t) = v(«a, x) — t is a special case with vy = —1

andv;; =0foralli=1,...,m.

The total cost of producing bundle x is given by c(x), where ¢
is a convex function (possibly linear). The set of feasible produc-
tion vectors is denoted by X C R’,. The firm is not able to observe
the consumer’s type, but has prior beliefs over the distribution of
types, described by the density function f(«), with compact sup-
port supp(f) = £2, where 2 C R™ is the space of types, and
2 is its closure. We assume that £2 C U is a bounded open set
with locally finite perimeter in the open set U, and that f is Lips-
chitz continuous.® Intuitively, a set has locally finite perimeter if
its characteristic function is a function of bounded variation, hence
it is a large class of open sets that includes the class of open con-
vex sets as a very small subclass.® We assume that v(-, x, t) can be
extended by continuity to £2. Consumers have an outside option
of value sy (), which is assumed to be continuously differentiable,
implementable and extendable by continuity to £2.7 Let xo () be
the outside option implementing so(«) at price p(«) for type «, so
that v(«, xo (@), p()) = Sp().

The firm looks for a selling mechanism that maximizes its prof-
its. The Taxation Principle (Rochet, 1985) implies that one can,
without loss of generality, assume that the monopolist simply an-
nounces a non-linear tarifft : X — R.

The above considerations can be summarized by the following
model. The firm selects a function t : X — R to solve

maX/ (t(x(e)) — c(x()))f (er)der, (1)
2

4 The economic rationale for this assumption is that if it did not hold (that is, if

Vi = H‘Z?d’[ > 0 for some i) we would have higher types less price sensitive, which
would give an extra incentive for the monopolist to charge them higher prices; we
assume this case away to concentrate on price discrimination alone.

5 It is convenient for our purposes to use some (basic) concepts and results from
geometric measure theory, and we refer the reader to Evans and Gariepy (1992)
and Chlebik (2002) for more information. For the reader who is not familiar with
geometric measure theory, it suffices to keep in mind that the type spaces that
we consider are allowed to be more general than the typical type spaces in the
literature. We also refer the reader for the examples in Section 3 for some concrete
geometric and economic intuition.

6 Recall that the characteristic function of £2 is given by xo(x) = 1ifx € £ and
X2 () = 0ifx ¢ £2. Hence, a set of finite perimeter can have holes and a rough (i.e.,
not Lipschitz) boundary, provided that the latter is not “too wiggly”, in the sense
that the variation of x, has to remain bounded.

7 For conditions of implementability of a surplus function see Basov (2005).
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where x(«) satisfies
x(o) € arg max
xeX
v(a, x, t(x)) if max v(a, x, t(x)) > so(a) (2)
XE.
x(a) = xo(@) otherwise.
Define the net utility as the unique function u(«, x) that solves
so(@) = v(e, x, u(a, X)). (3)

The economic meaning of u(«, x) is the maximal amount type o
is willing to pay for the bundle x. Given our assumptions on v, u
is differentiable by the Implicit Function Theorem. Note that the
optimal tariff paid by type « satisfies

E(x(@) < u(e, X(@)). (4)
Let s(«) denote the surplus obtained by type «:
max v(e, X, t(x))
xeX

—so(a) if maxv(e, x, t(x))
xeX

s(a) =
> so(a)
0 otherwise.
Accordingly, we have the envelope condition
Vs(a) = Vyu(e, x(@), t(x(@))) — Vso(a)

which holds for almost every o with x(«) # xo(o). From (3) we
have

Vso(a) = Vyv(a, x(a), u(a, x(@))) + ve(a, x(a), u(a, x(a)))
X Vyu(a, x(a)),

so the envelope condition plus our assumptions on v and v; ; yield
M) Vs(a) = Vou(a, x(er)) (6)
for almost every « with x(«) # xo(o), where

M@) = Jve (e, x(@), u(@, x(@)))] ™

is positive and bounded away from zero by assumption.
We are interested in the set of excluded consumers, given by

o € 2 1 x() = xo()},
that is, the set of types that optimally choose to not participate.

Assumption 1. u is strictly increasing in « for each x € X.

Fora, b € R™ let a - b denote the inner product of a and b.

Assumption 2. There exists K > 0 such that
u(e, x) < Ko - Vyu(a, x)
for every (o, x) € 2 x X.

Assumptions 1 and 2 are regularity conditions, requiring that
the net utility be increasing in o and bounded. Note that v is al-
lowed to be decreasing in « for each (x, t), as long as Assumptions 1
and 2 are satisfied.

For any Lebesgue measurable set E C R™ let L™ (E) denote its
Lebesgue measure and #°(E) denote its s-dimensional Hausdorff
measure. For s = m, the Hausdorff measure of a Borel set coin-
cides with the Lebesgue measure, while for s < m it generalizes
the notion of the surface area.?

8 For a definition of the Hausdorff measure, see Chlebik (2002).

Let 9,52 denote the measure-theoretic boundary of £2.° Because
£2 has locally finite perimeter, the measure-theoretic boundary can
be decomposed into countably many C! pieces and a residual set
with measure zero. That is,

o0
302 = U K. UN,

i=1
where K; is a compact subset of a C'-hyper-surface S;, fori > 1,
and #™ ' (N) = 0. Accordingly, let us write

K= {o € 2 :gi(x) =0}
fori > 1, withg : R™ — Rofclass C'.

Assumption 3. Forallo € R™and i > 1, we have
Vogi(e) € R™\ (R URT).

Assumption 3 restricts 2 to be of a particular class of type
spaces, which includes the “rightward-slanted diamond” type
spaces mentioned in the Introduction (see also Fig. 2 in Section 3).
Together with Assumption 1, it implies that the boundary of §2
is never parallel to the iso-surplus hyper-surfaces. As we argue in
Section 3 below, this is the key geometric requirement for obtain-
ing exclusion.

Our main results come next. They will be stated without refer-
ence to the well-known sufficient conditions for implementability
of the surplus function s in order to focus on the conditions that
highlight the nature of the contribution being made.

Theorem 1. Consider the problem (1)-(2), and assume that it has
a finite solution yielding an allocation x(c) and surplus s(a) which
are continuous. Then, under Assumptions 1-3, the set of excluded
consumers at the solution has positive measure.

That is, if the problem has a continuous solution, Assump-
tions 1-3 ensure that there will be exclusion.

Remark 1. The conditions in Theorem 1 are in general more per-
missive than the conditions in the literature, including those used
by Armstrong (1996). In particular, the literature focuses on the
quasilinear case, where the net utility is simply u(«, x) = v(o, X) —
so(a) = v(a, x), as so () is usually assumed to be equal to zero for
every «. Armstrong (1996) assumes that v (-, x) is homogeneous of
degree 1 and strictly convex, which are special cases of Assump-
tions 1 and 2. As for the type space §2, the assumptions are non-
nested: Assumption 3 allows for non-convex, general type spaces,
but with a particular boundary structure, whereas Armstrong’s as-
sumption that £2 is strictly convex allows for type spaces with
boundary structures violating Assumption 3.

Consider now an underlying set of all type spaces. It is given by
{25 : B € B}, where B is an index set. For each 8 € 8, £2g is an
open set with locally finite perimeter in some open set Ug and its
boundary structure is given by

o0
0:82p = |_J Kip U Ng,
i=1
where
Kip={a € 2p:ga, B) =0}
fori > 1,withg; : R"x 8 — RofclassC',and Ny is a set of #™ -

measure zero. We make the following assumption about {£25 :
B e B}:

9 The measure-theoretic boundary of a set is contained in the topological
boundary of the set. It consists of the points that are neither in the measure-
theoretic interior nor in the measure-theoretic exterior of the set, which are
supersets of their topological counterparts.
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Fig. 1. Armstrong’s setting.

Assumption 4. (i) B is a finite dimensional open manifold of class
C1; (ii) the family {g;};> is compact in the C! topology!?; (iii) there
exists B € B such that

Vagi(e, B) € R™\ (RT UR™)
forallo e R"andalli=1,...,k

That is, the parameters 8 determine the underlying set of type
spaces that we consider. Requirements (ii) and (iii) are mild tech-
nical requirements ensuring that we can apply transversality ideas
to establish that exclusion is generic: the compactness require-
ment in (ii) is a regularity condition that is satisfied if we restrict
to boundary structures formed of only finitely many pieces, as it
is the case in all applications we are aware of; (iii) simply requires
that at least one type space of the kind identified in Assumption 3
be included as a member of the allowed types spaces. A seemingly
more important requirement is the finite dimensionality of 8B in
requirement (i). But this is just for a cleaner presentation of our
ideas. In Lemma 6 in the Appendix, we make use of the standard
Transversality Theorem, which is valid in a finite dimensional en-
vironment. It is well known that there exist general versions of the
Transversality Theorem that allow for infinite dimensions.!! One
can generalize Assumption 4 allowing for an infinite dimensional
B and adapt Lemma 6 with a more powerful Transversality Theo-
rem. We leave this task to the interested reader. Let ¢ : 8 = R™
be given by ¢(8) = 2.

Theorem 2. Consider the problem (1)-(2) for each B € B, and as-
sume that so and Vsq are continuous at each («, B) in the closure of
the graph of ¢. Assume that the problem has a finite solution yield-
ing an allocation x(«; B) and surplus s(o; B) which are continuous
at each («, B) in the closure of the graph of ¢. Then, under Assump-
tions 1, 2 and 4, for a generic model B (that is, for all 8 in an open and
dense subset of B), the set of excluded consumers at the solution has
positive measure.

Thatis, if the problem has a continuous solution, Assumptions 1,
2 and 4 ensure that, generically, there will be exclusion.

Remark 2. The conditions in Theorem 2 are strictly more general
than the conditions in the literature. In particular, the inclusion
of a rightward-slanted diamond kind of type space as one of the
allowed type spaces (part (iii) of Assumption 4) is without loss
of generality. It is only when combined with parts (i) and (ii) of
Assumption 4 that part (iii) has a (mild) bite.

10 see Hirsh (1976) for a definition of the C! topology. Intuitively, proximity in the
C! topology means proximity of values and first derivatives.

1 see Golubitsky and Guillemin (1973) for the relevant concepts in the theory of
transversality. The version we use can be found in Mas-Colell et al. (1995, Theorem
M.E.2).

3. Discussion

We now provide some geometric and economic intuition be-
hind our results. Let us start with the setting in Armstrong (1996),
illustrated in Fig. 1 below. The type space §2 is a strictly convex
set in R™, for instance, a ball. At the solution, we compute the sur-
plus function as in (5) above, and consider the iso-surplus hyper-
surfaces s;l = {x € 2 : s(a) = ¢}, for some ¢ € R,. Under
Armstrong’s (1996) assumptions, the surplus function is convex,
so, in the two-dimensional case illustrated in Fig. 1, s; ' is a con-
cave curve. The set of types below 5;1 are the types enjoying less
than ¢ surplus. If the set of excluded types is of measure zero, then
sgl will (in the case depicted) be tangent to the boundary 952 of £2.
Now consider increasing the tariff by ¢ > 0 so that types below s;l
find it optimal to not participate. We argue that, for the monopolist,
the loss in profit from losing these types is more than compensated
by the gain in profit obtained by selling at a uniformly higher tariff
for every type above s;l. In fact, the gain in profit is of the order
O(e). The loss is proportional to the region below s_!, which, for
small &, is approximately a simplex with height

&

Vs’

for some « in the region, and base given by the m — 1 dimen-
sional measure #™~! of the part of the boundary 352 below 5;1.
This measure is in turn proportional to a™~!, with

a = g cot(y)

where y is the angle between the normal vectors to s, ' and 952.
That s, the loss is proportional to a™~'h which is of the order O(¢™).
Hence the loss is infinitely smaller than the gain, which then means
that the monopolist was not optimizing by not excluding a positive
measure of types.

Observe that the logic above breaks down when s 1is parallel
to 052, because then y = 0 and cot(y) = oc. In fact, when so_1
is parallel to 042, the types are essentially one-dimensional (by
identifying the type with the distance from the boundary to the
corresponding iso-surplus hyper-surface) and exclusion need not
be optimal.’?

Also note that, when sy is parallel to 352, the measure of the
intersection of s; ! and 982 is not #™ '-null, as opposed to the
case illustrated in Fig. 1. In fact, the logic described above car-
ries through under much more general conditions, as illustrated
in Fig. 2, where the type space is a rightward-slanted diamond and
the iso-surplus hyper-surfaces are more general (that is, are nei-
ther convex nor concave curves in the two-dimensional case illus-
trated). Because the intersection of any iso-surplus hyper-surface
and the boundary of £ is at most a two-point set (in the m-
dimensional case depicted, with m = 2), it is #™ -null. Again,
if the set of excluded types is of measure zero, then s ! will inter-
sect 02 only at one point, and similarly to the argument above,
increasing the tariff by ¢ > 0 will generate a loss of order 0(¢™)
and a gain of order O(¢). In fact, the loss is the area below s;‘, which
is again approximately a simplex with height proportional to ¢ and
base of order O(¢™~ 1), so it is of order O(¢™).

Fig. 2 illustrates Theorem 1: as long as the boundary structure of
£2 is such that none of the normal vectors of the components of the
boundary is strictly positive or strictly negative, the intersection of
an iso-surplus hyper-surface and 92 will be #™~!-null, and it will
be optimal to exclude a set of positive measure of types.

12 gee Basov (2007) for conditions ensuring that multi-dimensional types can be
summarized by a one-dimensional variable.
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Fig. 2. The rightward-slanted diamond.

Fig. 3. A more general setting.

_ -1
5o ! Se

Fig. 4. A type space close-by.

In general, the boundary structure of £2 may not satisfy As-
sumption 3, as it does in Fig. 2. For instance, consider the situa-
tion in Fig. 3. The iso-surplus hyper-surfaces are again general as
in Fig. 2, the type space is not convex and the boundary structure
fails Assumption 3. In the case illustrated, the intersection of s}
and 942 is not #™ '-null. By increasing the tariff by ¢ > 0, the
measure of types that will optimally not participate is not of or-
der O(¢™) anymore. It is again given by the types below s;‘, a set
whose measure is order O(¢), as it is approximately a hyper-cube,
with base of positive #™~! measure and height of ¢.

Now consider a model £2’ that is close to the model 2 in Fig. 3,
as illustrated in Fig. 4.'*> Now we again have a #™ '-null intersec-
tion of s !'and 942, and the same argument (now with three sim-
plices of order O(¢™)) establishes that the cost of increasing the
tariff by ¢ is of order O(¢™) and the gain is of order O(¢) if there
was no exclusion. That is, Fig. 4 illustrates Theorem 2: generically,
the intersection of the boundary structure of a type space and the
hyper-surface s; T will be 6™~ 1-null, so for a generic type space the
monopolist will do better by excluding a positive measure of types.

4. Examples

Before proceeding to the proofs, let us present some implica-
tions for economic applications, and also some examples to illus-
trate the nature of the results.

13 The depicted iso-surplus curves need not coincide with the ones in Fig. 3, as
the changed type space will affect the choices. But, by continuity, the new curves
will be close to the old ones, so the illustration in Fig. 4 is accurate. We should also
note that both £2 and £2’ are sets of locally finite perimeter satisfying part (ii) of
Assumption 4.

4.1. Applications

We first present a completion of the analysis in Armstrong
(1999) and then an application to involuntary unemployment.

Example 1. Armstrong (1999) reviews Lewis and Sappington’s
(1988) analysis of optimal regulation of a monopolist with two-
dimensional private information. A single product monopolist
faces a stochastic demand function given by q (p) = a + 6 — p,
where p is the price of the product, a > 0 is a fixed parameter,
and 6 is a stochastic component to demand, taking values in an
interval [Q , 9] C R,.The firm’s cost is represented by the function
C(q) = (co +¢) q + F, where g is the quantity produced, ¢, > 0
and F > 0 are fixed parameters and c is a stochastic component to
the cost, taking values inan interval [¢, €] C Ry. The firm observes
both the demand and the cost functions, while the regulator only
knows thata = (0, ¢) is distributed according to a strictly positive
continuous density function f (6, c) on the rectangle 2 = [Q , 0] X

[c, €]. For feasibility, we assume that a+6 > co+C, i.e., the highest
demand exceeds marginal costs, for all possible realizations of the
stochastic components of demand and cost.

The regulator wants to maximize social welfare and presents to
the monopolist a menu of contracts {p, t(p)}, where a contract has
the monopolist sell the product at unit price p and pay a tax t(p)
to the regulator. Negative values of t represent subsidies. Social
welfare is given by the sum of the consumers’ surplus %(a +6 —

p)? and profits pq(p) — c(q) — t(p). Let us employ a change of
variables to represent the problem of the regulator in the form of
the problem in Section 2. Set x = p,and X = (co + ¢, a + 0) as the
set of feasible prices; let

vie,x) =(@+60 —x)(x—co—c)—F
be the profit before the tax, and let

C(X):—%(a—i—(-)—x)z—(a+9—x)(x—co—c)+F+t(x)

be the negative of welfare net of taxes. Finally, let xo(«) be the
outside option yielding sq () = 0.

The problem of the regulator is to select a tax schedule t : X —
R to solve

max / (E(x(@)) — c(x(@)f (@)da
22

where x(«) satisfies
x(o) € arg max

v(a, X) XEXt(x) if r)r(l&x via,x) —t(x) >0

x(a) = Xo(e)

The choice of x (o) by the monopolist depends on whether she can
derive nonnegative returns when producing. If that is not possible,
she will choose the outside option xq ().

Lewis and Sappington (1988) assume that the parameter a can
be chosen sufficiently large relative to parameters F and ¢y so that a
firm will always find it in its interest to produce, even for the very
small values of 6. However, Armstrong (1999) shows that such a
hypothesis cannot be made when £2 is the square [0, 1] x [0, 1].
Furthermore, when 2 is a strictly convex subset of this square,
Armstrong (1999) uses the optimality of exclusion theorem in
Armstrong (1996) to show that some firms will necessarily shut
down under the optimal regulatory policy. Armstrong (1999) then
adds “... I believe that the condition that the support be convex
is strongly sufficient and that it will be the usual case that exclu-
sion is optimal, even if a is much larger than the maximum possible
marginal cost”. That insight could not be pursued further due to a
lack of a more general result, and Armstrong (1999) switched to a

otherwise.
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discrete-type model in order to check the robustness of the main
conclusions in Lewis and Sappington (1988).

It is clear that the regulator’s problem is essentially the stan-
dard problem solved in Section 2 above. Note that, given the spec-
ification of X above, Assumptions 1 and 2 are met. Assumption 4
is met as soon as we include the rightward-slanted diamonds as
allowed type spaces, as for instance the following slight change
of the square: co{(0,0), (¢, 1), (1 +¢&,1+¢),(1,¢e)},fore > 0,
where “co” stands for convex hull. All the hypotheses of Theorem 2
are satisfied, so we may conclude that a set of positive measure of
firms will generically be excluded from the regulated market. Arm-
strong’s (1996) conjecture is therefore confirmed, generically.

We can actually say more about the matter for the given type
space. The gradient of the surplus s(«) is Vs(o) = (x(o) — ¢co —
c,a — 6 — x(a)), and the boundary of the square is described by

gi,i=1,...,4with Vgi(e) = (1,0) fori = 1,3 and Vgi(0) =
(0, 1) fori = 2, 4. Hence the rank of

Vs(a)

Vgi(a)
is equal to two fori = 1,...,4, meaning that the iso-surplus

curves are never parallel to the boundaries of the square (as x(«) €
X for every «). Hence, even though the square [0, 1] x [0, 1] vio-
lates Assumption 3, the intersection of the iso-surplus curves and
the boundary of the type space will be #!-null, as long as the iso-
surplus curves do not become asymptotically vertical or horizontal
as x gets close to the boundaries of X. If the set of allowed prices is
chosen to be an interval strictly inside of (co+1, a) = (co+c¢, a+6),
then the gradient Vs(«) will be bounded away from (1, 0) and
(0, 1), and the iso-surplus curves will never be either almost verti-
cal or almost horizontal. As a result, the intersection of s; ' (recall
the arguments and notation from Section 3) and the boundary of
the square will be #'-null, so an ¢ increase in the subsidy schedule
from a situation with no exclusion will lose an order O(¢?) of firms
and generate a gain of order O(g). Again, this establishes that the
regulator will exclude a positive mass of firms. Importantly, ob-
serve that restricting X to be strictly inside of (co + 1, a) goes in
line with Lewis and Sappington’s (1988) idea that a firm will al-
ways find in its interest to produce. In fact, such a restriction can
be viewed as avoiding a priori exclusion, for prices below cost or
above the highest demand for a given type of the firm will certainly
exclude the firm. Yet, due to the geometry of exclusion, not exclud-
ing firms a priori necessarily leads to exclusion of a positive mass
of firms once the optimal contract is implemented. O

Example 2. Another interesting application concerns the emer-
gence of involuntary unemployment as a consequence of adverse
selection. Consider a firm in an industry that produces n goods cap-
tured by a vector x € X C R!. The firm hires workers to produce
these goods. A worker is characterized by the cost she bears in or-
der to produce goods x € R", which is given by the effort cost
function e (o, x). The parameter ¢ € 2 C R™ is the worker’s un-
observable type distributed on an open, bounded set 2 C R™ ac-
cording to a strictly positive, continuous density function f.

Therefore, if a worker of type « is hired to produce output x and
receives wage w (x), her utility is w (x) — e («, x), where e(«, -)
is cost of effort, which depends on the type of the worker. If the
worker is not hired by the firm, she will receive a net utility so («),
either by working for a different firm, or by receiving unemploy-
ment compensation.

Letp : X — R, denote the revenue function that the firm faces,
and assume it is a concave function.

The firm’s problem is to select a wage schedule w : R}, — R to
solve

max f [p(x(0)) — @ (x (@))]f (e)der,
2

where x(«) satisfies
x(o) € arg max
xeX

w(x) —e(a,x) if m%(x w(x) —e(a, X) > sg (%)

x(@) =0 otherwise.
Consider the following change in variables: t (x) = —w (x),
v(a,x) = —e(a, X),c(x) = —p(x). Then the firm’'s problem can

be rewritten as
max / (E(x(@) — c(x(@)f @)da,
2

where x(«) satisfies
x(o) € arg max
xeX
vie,x) —t(x) if max(v(a, x) — t£(x)) = so (%)
Xe

x(@) =0 otherwise.

Therefore, the arguments for the monopolist screening problem
can be extended to the hiring decision of the firm. In particular,
the firm will generically find it optimal not to hire a set of positive
measure. If the firm is a monopsonist in the sense that agents can
work only at that firm, then our main result provides a rationale
for involuntary unemployment. O

4.2. No-exclusion is knife-edge

The next three examples illustrate why the main result is only
about the generic case. There are non-generic cases where no con-
sumer is excluded.

Example 3. Consider a problem that yields an excluded set §2,
with positive measure, and modify the problem by considering
only the types in 2 \ 2/, where 29 C £2’. Would the modified
problem have no exclusion? The answer is yes if 2’ = 29, but the
answer is no if £2’ is a generic superset of £2,.!4 That is, the shape of
£2’ has to bear a tight relation to the shape of £24 for no exclusion to
hold in the model £2 \ £2’. And of course, even if this tight relation
holds, a slight change in the boundary structure of £2 would suffice
for us to have exclusion in the modified model. O

Example 4. Consider the example presented by Rochet and Stole
(2003). The quasilinear utility of agent of type « is given by

v(a, x) = (a1 + az)x

and £ is a rectangle with sides parallel to the 45° and —45° lines.
Rochet and Stole argued that one can shift the rectangle sufficiently
far to the right to have an empty exclusion region. Their result
is driven by the fact that they allow only very special collections
of type spaces, rectangles with parallel sides. Formally, the type
spaces allowed violate Assumptions 3 and 4(iii) as the boundary
structure is given by V,gi(«, 8) = (1, 1) € ]Rfr fori = 1,3 and
Vo8&i(a, B) = (—1,1) fori = 2, 4 (where i labels, in a clockwise
fashion starting from the southwest side, the sides of a rectangle
with sides parallel to the 45° and —45° lines, and B represents
right-shifts of such rectangles). In fact, note that (using u(«, x) =
v(a, X) because so(«) = 0)

Vou(e,X) \ _ (x x
Vogile, B)) — \1 1

fori = 1,3, so it is a matrix of rank equal to 1, which means
that the iso-surplus curves (more precisely, lines) are parallel to

14 we are grateful to an anonymous referee for this observation.
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the downward sloping sides of the type space.’®As we saw in Sec-
tion 3, in such cases the cost-benefit analysis does not lead us to
conclude that exclusion is optimal (in fact, as argued there as well,
this is a case where types can be summarized by a one-dimensional
variable, so the particularities of the multi-dimensional setting are
lost).

Observe that a very small change in the type set changes that
result. Consider, for example, a slightly perturbed type space, with
Vogi(a, Bo) = (1,1 +¢), fori = 1,3, where ¢ > 0 is a small

positive real number. Then, forallx #20andi=1,...,4
Vou(o,x) \
rank (vagi(cx, o) =%

so that the iso-surplus lines will cut transversally the boundary of
the perturbed type space. As a result, the intersection of these two
will be #'-null and, using the argument in Section 3, we obtain
that exclusion is optimal. In words, Rochet and Stole (2003) is a
knife-edge case of no exclusion: slight perturbations of the bound-
ary structure of their type spaces suffice to generate exclusion. O

Example 5. Consider the model of Armstrong and Vickers (2001),
which allows for multi-dimensional vertical types. In this kind of
models, the type consists of a vector of vertical characteristics,
a € £2 C R™asin Section 2, and a parameter y € [0, 1] captur-
ing horizontal preferences. The type space is given by the Cartesian
product £2 x [0, 1] and y is assumed to be distributed indepen-
dently of «. The utility of a consumer is given by

v(a,x;y) =v(a,x) — 1y,

where r is a commonly known parameter, and x € X C R is
the vector of goods. Let v(«, 0) = 0 so that the iso-surplus hyper-
surface corresponding to x = 0 is ry = constant, which is par-
allel to the vertical boundary of the type space, y = 0. Therefore,
in such a model there is the possibility of no exclusion. The model
was also investigated in an oligopolistic setting, where r was inter-
preted as a transportation cost for the Hotelling model. Conditions
for no exclusion under different assumptions on the dimension-
ality of & and the monopolist’s risk preferences were obtained by
Armstrong and Vickers (2001), Rochet and Stole (2002) and Basov
and Yin (2010). Nevertheless, these are all knife-edge cases. In fact,
let us parametrize the boundary of the set £2 so that it is described
by the equation

o(a) =0

and embed our problem into a family of problems, for which the
boundary of the type space is described by the equation

gla,y; B) =0,
where g(-, B) : 2 x [0, 1] — Ris a C! function with

g, y;0) = go(a)(go(@) = b)y(y — 1)

for some constant b. Note that this establishes that, for 8 = 0 the
type space is the cylinder over the set §2 considered by Armstrong
and Vickers (2001) for which the exclusion region is empty.'® But
under Assumption 4, among the possible underlying type spaces
there will be at least one with boundaries with #™!-null intersec-
tions with the iso-surplus curves. For this type space the exclusion
region will be non-empty. And a standard transversality argument
establishes that the same is true for almostall 8. O

15 Observe that here Vou(e, x(«)) is the gradient of the surplus function, Vs(«).

16 The level set g(a,y,0) = 0 of the displayed equation is exactly the said
cylinder.

4.3. Anillustration of the assumptions

We conclude this list of examples with an illustration of
Assumptions 1-4.

Example 6. Consider a consumer who lives for two periods. Her
wealth in the first period is w and inthe second period her wealth
can take two values, wy or wy. Let p be the probability that w = wy,
and let § € (0, 1) be the discount factor, so that the private in-
formation of the consumer is characterized by a two-dimensional
vectora = (1—p, 1—35). The consumer’s preferences are given by:

V(c1, ©2) = v(cy) + 8Evu(ca)

where ¢; and c; are the consumption levels in periods 1 and 2 re-
spectively, and v(-) is increasing with its derivative v’ bounded
away from zero. Assume that wealth is not storable between peri-
ods. Instead, the consumer can borrow x from a bank in period 1,
and repay t in period 2 if w = wy, and to default if w = w; in pe-
riod 2. If the consumer does not borrow, her expected utility will be

so(@) = v(w) + §(pv(wy) + (1 — p)v(wy)),

which is the type dependent outside option. If she borrows x and
repays t, the expected utility will be

v(a, X, t) = v(w +x) + d(pv(wy — t) + (1 — p)v(wy)),

which is strictly increasing in x and strictly decreasing in t. Let £2;
= (0, 1)? be the type space, with boundary captured by g;(«, 1),
i=1,...,4, with V,gi(a, 1) = (0,1) fori = 1,2 and V,gi(«,
B1) = (1,0) for i = 3, 4. Assumption 3 is violated by §2;. But
let £2, be another type space, included in the underlying space of
type spaces, with boundary given by gi(«, 8,),i = 1, ..., 4, with
Vu8gi(a, B2) = (—e, 1) fori = 1, 2 and V,gi(a, f2) = (1, —¢) for
i = 3, 4, for some & > 0. Assumption 4(iii) is thus met.
As

Av Av
Vel (o, X) = < ) ,

pv’’ sv'

where Av = v(wy) — v(wy — u (a, x)) > 0, Assumptions 1 and
2aremetaswell. O

Example 6 above is a natural setting to discuss unavailability of
credit to some individuals, which is important to justify monetary
equilibria in the search theoretic models of money.!”

5. Conclusion

We showed that, in general, exclusion is optimal in multi-
dimensional monopolistic screening problems. In particular, we
provided novel sufficient conditions for exclusion and showed that,
under a sufficiently rich underlying set of type spaces, if one such
type space satisfies the sufficient conditions for exclusion, then
exclusion obtains for a generic type space. The results rely on
the straightforward geometric idea that if the iso-surplus hyper-
surfaces cut the boundary of the type space transversally, then the
monopolist cannot be optimizing by including a set of full measure
of types: a slight uniform increase in the tariff will certainly
increase profits, as only a negligible fraction of types will drop out.

17 See, for example, Lagos and Wright (2005).
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Appendix. Proofs

We divide the proofs into several intermediate steps. Let X (R™)
be the hyperspace of compact sets in R™, endowed with the topol-
ogy induced by the Hausdorff distance dy, given by

dy(E,F) =inf{e > 0: E C F*,F C E®},

where
Ef = JBe.¢)
a€E

and B(«, ¢) is the open ball centered at & and with radius ¢ > 0.
Because

lim L£™(E®) = L™(E),

lim J(E°) = #°(E)
e—>0+ e—>0+

for all s > 0, both £™ and #¢° are upper semicontinuous functions
in X (R™) (Beer, 1975).

Lemma 1. Let E € X (R™) be such that L™(E) = #°(E) = O, for
somes > 0, and let (Ey)k>1 be a sequence in X (R™) such that E, —
E. Then £™(Ex) — 0and #°(Ey) — O.

Proof. Because L™ is a non-negative upper semicontinuous set
function, we have

lim EinfE LT(E) > 0= L™E) > lim sup L™(Ep),
k‘)

Ex—E
so L™(Ex) — 0, and analogously for #°. O

That is, Lemma 1 establishes continuity of Lebesgue and
Hausdorff measures at zero.

Let us write 290 = {a € 2 : s(«) = 0}, where s(«) is the
surplus obtained by type «. Extending s by continuity to 952, let
R0 = {a € 2 : s(a) = 0}. We also extend x by continuity to 2.

Lemma 2. Under Assumption 1, £™(£2,) = 0 implies 2y C 352.

Proof. If 2, Z 02, thereis o € £y and & > 0 with B(a, &) C £2.
Then
LM{ad e 24 <a}NBa, &) > 0.

Because of Assumption 1, we cannot have s(&) > 0forany @ < «,
for otherwise s(«) > 0 as well. So

{@eR:&<a}NBa,e) C 2,
contradicting L™(2¢) =0. O

Lemma 2 states that if the exclusion set has Lebesgue measure
zero it should be part of the topological boundary of the type set.
Assumption 1 is crucial for this result. If it does not hold it is easy
to come up with counter-examples even in the one-dimensional
case. For examples, see Jullien (2000).

Let § solve the monopolist’s problem without the participation
constraint. Note that £2 can be expressed as

R0 ={a e 2:3a) <sy(a)}.

Now decompose it as

Qo=12,U%,

where 2, = {a € 2 : §() < sp(@)} and 2, = (o € 2 : §(at) =
So(e)}.

Lemma 3. £’"(§§) =0.

Proof. If 2, = { then there is nothing to prove. So assume it is not
empty, pick o, @ € 53, with@ < o and & # «. Then u(a, x(&@))
= t(x(a)) because v(@, x(&), t(x(&))) = so(@). By Assumption 1,
u(er, x(&)) > u(@, x(@))

and, because v is strictly decreasing in t,

so(e) = v(a, x(@), u(er, x(@))) < v(e, X(@), t(X(Q))).

But so(a) = v(a, x(), t(x(a))), so the inequality contradicts the
optimality of x(«) for type «. Therefore we must have o ¢ 53. The
same argument shows that if ¢ € ﬁg and & < «, then & ¢ [w3,
for otherwise « could not be in ﬁé in the first place. So for any pair
(o, @) in 5(2), we must have @ £ & and @ £ «. But this means that
53 is a porous set: for any « € 53 and r > 0, there is a r/8-ball

. - =2
inside of the r-ball centered at « and disjoint from £2,,. Porous sets
in R™ have zero £™-measure.’® O

Lemma 4. The surplus functions : 2 — R is Lipschitz continuous.

Proof. Take @ and o’ and a linear path y connecting these two
points. Then

/

/ Vo(y(€),x(y (), tix(y () - y'(€)dE

o

|s(er) — s(a)| =

/

- / Vso(y (€))7 (&)ds | .

As 2 is compact and the functions involved are continuous, we can
find a common upper bound K for the integrands. As we are in-
tegrating over the line connecting « and o’ of length |l — o/,
the right hand side is bounded by K|ja — |, establishing the
result. O

Lemma 5. Under Assumptions 1 and 3, if £™(229) = O then
H™1(20) = 0.

Proof. By Lemma 2, 2, C 9£2. Because #™ (32 \ 3.£2) = 0,
consider £2¢ N d.$2, which is given by

o0
20N 8.2 =_J20UNNR).
i=1

where
R0 ={a € 2 :gi(a) =0,s(cx) =0}

fori > 1. Now Assumptions 1 and 3 ensure that the vectors Vs(«)
and V,g;(x) are linearly independent, for all i > 0. Hence, by
the Implicit Function Theorem,'® §2; is a manifold of dimension
at most m — 2. So #™1(2,;) = 0. Hence

(o]
HN (20N 0.2) <Y H™(20) + H™(NN2) =0,

i=1

as we wanted to show. O

18 gee Zajicek (2005) for a reference on porous sets.
19 See Theorem M.E.1 in Mas-Colell et al. (1995).
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We are now ready to prove Theorem 1. We will use the Gen-
eralized Gauss-Green Theorem, which states that for any £2 with
locally finite perimeter in U C R™, and any Lipschitz continuous
vector field ¢ : U — R™ with compact support in U there is a
unique measure theoretic unit outer normal 7 (o) such that

/ divpda = f @ - TodH™ !,
2 u

where

is the divergence of the vector field ¢.

Proof of Theorem 1. By way of contradiction, assume that
L™(82¢) = 0.Let k be a positive integer and denote by 7y the profit
obtained by selling to the types in

Qk={ae.(2:s(a)§’1<}.

An implication of Lemma 4 is that £2y is a set of locally finite
perimeter in the open set U. Indeed, Lipschitz domains are of lo-
cally finite perimeter (Pfeffer, 2012, Proposition 4.5.8.), so the es-
sential boundary of §2 is of locally finite ™' measure.

Because c is non-negative, we must have

< / ((x(@)f (@)da,

Lk

and from (4) we have
”kS/, u(a, x(a))f (@)do.
4

Observe that with £™(£2) = 0 we have £™(2y) = L™(2x\ 20),
so the envelope condition holds for almost all types in §2. Assump-
tion 2 and the implication of the envelope condition (6) yield

e <K /; o - Vs(a)A(o)f (a)do.
2k

Observe that A : 2 — R is uniformly continuous because it
is continuous and £2 is compact. So A is the uniform limit of a se-
quence of Lipschitz continuous functions (Georganopoulos, 1967).
Hence, for each e > 0, let A, be a Lipschitz continuous function
such that sup,.z [|A: (o) — A(a)|| < &, where § > 0 is chosen so
that

me <K | (o Vs(@)r:(@)f (a)da + &.
2k

Applying the Generalized Gauss-Green Theorem to the Lipschitz
continuous vector field p(a) = as(@)r.(a)f(a), and using
div(asi.f) = sdiv(arf) + Afa - Vs, we get
7= K [ s@h @ @@ )z @

U

—I(L s(a)div(ar (o)f (@))da + €.
[

The functions s, A, f, & - T and div(aA, (@)f (@)) are bounded in
£21, so we can find a common upper bound B. Because s(«) < % in

2 and supp(f) = £2, we have
1 . _
T < EB(%m71(Qk) + L™(21) + &.

Now consider increasing the tariff by % The consumers in the set
2, will exit, and 7, will be lost, but each other consumer will pay

,1{ more. Because the total mass of consumers that exit is bounded

by BL™(82;), the change in profit is
1 . _ _

Az S [(1 = BL"(20) = B (20 + L7(2:)] — &
k

From Lemma 5, #™~1(£2¢) = 0, and hence from Lemma 1 we
have £™(£2x) — 0and #™ '(£2y) — 0, because, by continuity of
s and the compact support of f, each £2 is compact. But then for
large k, we select g, € (0, 1%(")), where g(k) = B[2L™(2y) +
FH™1(£2))], so that Ar is positive, contradicting the optimality of
the tariff. O

Moving to Theorem 2, let us keep track of which type space we
are dealing with. That is, let us write £y g = {0 € g : s(a; B) =
0}, where s(a; B) is the surplus function obtained by type o when
the underlying type space is £24. Likewise, we shall make explicit
the dependence of the relevant object on the underlying type space
indexed by 8 € B, viz. x(«; B), Xo(a; B), etc. Extending s(-; ) by
continuity to 924, let 205 = {a € 25 : s(a; B) = 0}. We also
extend x(-; 8) by continuity to 9£2.

Note that Lemmas 2-4 hold true for any type space §2g, 8 € 8.
Lemma 5 has to be reformulated as follows:

Lemma 6. Under Assumptions 1 and 4, if £™(82o, g) = 0 forall B
in some open subset V. C B, then there exists B’ € V such that
ﬂmil(goyﬁ/) =0.

Proof. By Lemma 2, 205 C 082 for all B € V. Because
H™ (0825 \ 0.825) = 0, consider 29 5 N 9,82, which is given
by

)
50,/3 N 8e[2ﬂ = U§0i’ﬂ (@) (Nﬂ mﬁo,ﬁ)a

i=1

where
Qoip =o€ 2p:gi(a, B) =0,s(c; B) =0}

fori > 1.Fixa 8 € V. Assumptions 1 and 4(iii) ensure that there is
B € B for which the level sets of s(«; ) are transversal to g;(c, B),
for all i > 1. The Transversality Theorem?° then implies that, for
each i, there exists a set M; € 8B of full measure such that the level
sets of s(«; B) are transversal to the level sets of g;(«, 8”), for all
B € M.Let M = (N, M;, and note that M also has full measure
as the measure of its complement is zero. Thus, for all 8 € M, the
level sets of g; (o, B') are transversal to the level sets of s(«; 8), and
hence for any neighborhood of 8 there exists 8’ such that the level
sets of g;(«, B’) are transversal to the level sets of s(«; 8), for all
i>1

Observe that, by compactness of K; g/, the set {« : gi(a, B') =
s(a; B) = 0} is finite. Let it be given by {«', ..., al}. Let in de-
note the angle between V,g;(a‘, 8') and Vs(a’i; B), where ¢; €
{1, ..., L;}. Because of transversality, Gf" € (0, ), for all £; and i.2!
For each i, let & > 0 be such that Qizi € (e, m — &), for ¢; =
1,..., L. Let U; be an open neighborhood of g; (in the C! topol-
ogy) such that all functions § € U, at points o where (o) =
s(a; B) = 0, have the angles between Vg () and Vs(«; B) within
&;/2 of the corresponding angles Gie !, By part (ii) of Assumption 4,
there s a finite collection {Uy, . . ., U,} (after relabeling the indices)
that covers the family {g;}i>1. Let d = min{eq, ..., &,}/2 and note

20 Theorem M.E.2 in Mas-Colell et al. (1995).

1 Here 7 denotes the irrational number 7 = 3.14159.. ., and not the profit of
the monopolist.
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that Oig" € (d, m —d) for all ¢; and i. Observe that, by (5), the optimal
tariff t must be continuous, as it is the upper envelope of a family
of continuous functions. By continuity of x(«; 8) in 8 and continu-
ity of Vsg in 8, for all 8’ sufficiently close to 8 the angles between
Vs(a'i; ') and Vs(a'i; B) are at most d/4 apart, for all ¢; and all
i,as Vs(a; B) = Vov(a, x(a; B), t(x(a; B))) — Vso(er; B7). Fur-
ther, for 8’ close enough to B, it must be the case that the angles
Gf " are at most d/4 apart from the corresponding angles at the new
points where g;(«, 8/) = s(a; B/) = 0. Hence the angles where
the level sets of s(«; ') and of g;(«, B’) intersect must fall in the
interval (d/2, m — d/2), so the level sets of s(«; B’) are transversal
to the level sets of g;(«, B’), fori > 1. Observe that we can choose
B’ close enough to 8 so that 8’ € V.

By the Implicit Function Theorem, for every i, #™ ' (2¢; ') =
0as §0i_,g/ is a manifold of dimension at most m — 2. Hence

o0
H™ (20,5 N 3eRp) < Z H™ (20 p)
=1

+H™ (N N R20p) =0,
as we wanted to show.?> O

Lemma 6 provides the basic step in establishing denseness of
the set of models where exclusion occurs with positive probability.
It is a straightforward application of the standard Transversality
Theorem. Nevertheless, it shows that Assumptions 1 and 4 are
potent, despite being weak.

Let & C B be the set of models where the set of excluded con-
sumers has positive measure:

E§={BeB:L"(Rp) >0}

Note that the set {« € 20,5 : x(a) # Xo(«)} is contained in ﬁé’ﬁ,
so Lemma 3 ensures that & is indeed the set of models where the
set of excluded consumers has positive measure.

Proof of Theorem 2. We shall show that & is an open and dense
subset of B. We start with denseness, using again the Generalized
Gauss-Green Theorem.

By way of contradiction, assume that £™ (2, p) = Oforall Bin
some open set V C . For any natural number k, let y g be the
profit obtained by selling to the types in

k

The exact same steps as in the proof of Theorem 1 establish that,
foreach 8 € V, the change in profit from increasing the tariff by % is

ﬁk,fg = {O[ 655 1s(a; B) < 1}

‘1 . J—
Amp = [(1 = BL"(2kp)) = B (2kp)
+ L7 (2ip)] — &

From Lemma 6, there exists 8’ € V with #™ (20 4) = 0, and
hence from Lemma 1 we have £™(2y ) — 0and #™ (2. 4)
— 0, because, by continuity of s(-; 8’) and the compact support
of f(-), each Ek,/gf is compact. But then for large k, we select g, €
(0, ik(k)), where g(k) = B[2L™(2kp) + H™ 1(21.5)], so that
Amg 1s positive, contradicting the optimality of the tariff for the
model B’. Therefore, we must have £’"(§0.ﬂ/) > 0.As V was arbi-
trary, & is dense, as we wanted to show.

2 1 fact, we established the stronger result that the set of g’ such that
H™1(20,4) = 0isdensein V.

As for openness on € in B, recall that 2 5 = ﬁéﬁ U 5(2”,. By
continuity of S(-; 8) and so(+; B), ﬁ;qﬂ is an open set. By Lemma 3,
53 p has zero Lebesgue measure. & 7 ¢ as it is dense, so take
B € &, and note that 5& s . Pick ¢ > 0 such that the open

set Cp = {or € 25 : S(a; B) — sola; B) < —c}is included in ﬁé’ﬁ.
Pick o in the interior of Cg so that g;(«, ) > 0 foralli > 1. For
each i, let &; > 0 be such that gi(«, 8) > &;, and let U; be an open
neighborhood of g; (in the C! topology) such that g(a:) > &;/2 for
all functions g§ € U;. By part (ii) of Assumption 4, there is a finite
collection {Uy, ..., U,} (after relabeling of indices) that covers the
family {gi}i>1. Let d = min{eq, ..., &,}/2 and note that gj(«, B) >
d for every i > 1. By the same compactness assumption, we can
choose ¢/ > 0and 8’ > 0 such that |g;(e’, B') — gi(a, B)| < d/2
whenever (¢/, 8’) € B () x By (B), for every i > 1. It follows
that By (o) C £2g for every 8’ € By (B). Let h(w; B) = S(a; B) —
so(a; B) and pick e € (0, ¢’) and § € (0, §’) such that |h(a'; /) —
h(a; B)] < c/2 whenever (', 8/) € B:(x) x Bs(B). It follows
that h(a’; B’) < Oforall (¢, 8') € Be(a) x Bs(B). Summing up,
B:(a) C £2¢p and hence L™ (29 5/) > 0, for every B’ € B5(p), as
we wanted to show. O
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